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1. Suppose T : V →W is a linear transformation. Prove that the range of T is a subspace of W .

Proof: Suppose c ∈ F and α, β ∈ Range(T ). We must show that cα+ β ∈ Range(T ).
Because α, β ∈ Range(T ), we know that α = T (γ) and β = T (δ) for some γ, δ ∈ V .
Then cα+ β = cT (γ) + T (δ) = T (cγ) + T (δ) = T (cγ + δ), by linearity of T .
But now we have cα+ β = T (cγ + δ) ∈ Range(T ).
It follows that Range(T ) is a subspace of W .

2. Suppose T : R2 → R2 is a linear transformation for which T 2 = T .

Show that there is a basis B of R2 for which [T ]B is one of the matrices

[
0 0
0 0

]
,

[
1 0
0 0

]
, or

[
1 0
0 1

]
.

Consider the following three mutually exclusive and exhaustive cases.

CASE 1: Say T is the zero transformation, that is, T (α) = 0 for all α ∈ R2. Let B = {β1, β2} be any basis of R2.

Then T (β1) = 0 = 0β1 + 0β2, which means [T (β1)]B =

[
0
0

]
. Also T (β2) = 0 = 0β1 + 0β2, so [T (β2)]B =

[
0
0

]
.

Now [T ]B =
[
[T (β1)]B [T (β2)]B

]
=

[
0 0
0 0

]
.

CASE 2: Say T is the identity transformation, that is, T (α) = α all α ∈ R2. Let B = {β1, β2} be any basis of R2.

Then T (β1) = β1 = 1β1 + 0β2, which means [T (β1)]B =

[
1
0

]
. Also T (β2) = β2 = 0β1 + 1β2, so [T (β2)]B =

[
0
1

]
.

Now [T ]B =
[
[T (β1)]B [T (β2)]B

]
=

[
1 0
0 1

]
.

CASE 3: Say T is neither the identity transformation nor the zero transformation. Since T 6= O, there is a vector
γ ∈ V for which T (γ) 6= 0. Since T 6= I, there is a vector δ ∈ V for which δ−T (δ) 6= 0. Put β1 = T (γ) and β2 = δ−T (δ).

Notice T (β1) = T
(
T (γ)

)
= T 2(γ) = T (γ) = β1 and T (β2) = T

(
δ − T (δ)

)
= T (δ)− T 2(δ) = T (δ)− T (δ) = 0 .

Put B = {β1, β2}, which is a basis as follows: As |B| = 2 = dim(R2) we only need to verify that B is independent. If
xβ1 + yβ2 = 0, then T (xβ1 + yβ2) = T (0), which is xT (β1) + yT (β2) = 0, or xβ1 + 0 = 0, and this implies x = 0. Then
from xβ1 + yβ2 = 0 we get yβ2 = 0, so y = 0 too. Thus the set B is linearly independent, and hence a basis.

Note T (β!) = β1 = 1β1 + 0β2, so [T (β1)]B =

[
1
0

]
. Also T (β2) = 0 = 0T (β1) + 0β2, so [T (β2)]B =

[
0
0

]
.

Thus [T ]B =
[[
T (β1)

]
B

[T (β2)]B

]
=

[
1 0
0 0

]
.



3. Suppose T : V → V is a linear operator on a 3-dimensional vector space V .

Suppose there is a vector α ∈ V for which T 2(α) 6= 0 but T 3(α) = 0.

(a) Show that the set B =
{
α, T (α), T 2(α)

}
is a basis for V .

Because |B| = 3 = dim(V ), we only need to verify that B is independent. Thus suppose

xα+ yT (α) + zT 2(α) = 0. (1)

Apply T to both sides. We get T
(
xα+ yT (α) + zT 2(α)

)
= T (0), which is xT (α) + yT 2(α) + zT 3(α) = 0, or

xT (α) + yT 2(α) = 0 (2)

(since T 3(α) = 0). From (2) we get T
(
xT (α) + yT 2(α)

)
= T (0), which is xT 2(α) + yT 3(α) = 0, or

xT 2(α) = 0. (3)

From (3) we get x = 0. Plugging this into (2) yields y = 0. Then (1) yields z = 0. Since x = y = z = 0, we have
shown that B is independent, hence a basis.

(b) Find the matrix of T relative to B, that is, find [T ]B.

Note T (α) = 0α+ 1T (α) + 0T 2(α), which means [T (α)]B =

 0
1
0

.

Also T
(
T (α)

)
= 0α+ 0T (α) + 1T 2(α), which means

[
T
(
T (α)

)]
B

=

 0
0
1

.

Finally T
(
T 2(α)

)
= 0 = 0α+ 0T (α) + 0T 2(α), which means

[
T
(
T 2(α)

)]
B

=

 0
0
0

.

Consequently [T ]B =
[[
T (α)

]
B

[
T
(
T (α)

)]
B

[
T
(
T 2(α)

)]
B

]
=

 0 0 0
1 0 0
0 1 0

.



4. Consider the basis B =

{[
1
−1

]
,

[
0
1

]}
of R2. Find the dual basis B∗.

Let’s begin by finding two functionals that are zero on the second and first basis element, respectively.

Define f1 ∈ (R2)∗ as f1

([
x
y

])
= x. Then f1

([
1
−1

])
= 1 and f1

([
0
1

])
= 0.

Define f2 ∈ (R2)∗ as f2

([
x
y

])
= x+ y. Then f2

([
1
−1

])
= 0 and f2

([
0
1

])
= 1.

Then B∗ = {f1, f2}.

5. Suppose a vector space V has basis B = {β1, β2, . . . , βn} and dual basis B∗ = {f1, f2, . . . , fn}.

Let α ∈ V . Derive the formula α =

n∑
i=1

fi(α)βi.

Take an arbitrary α ∈ V . We know we can write α as α =

n∑
j=1

cjβj . Now observe that

n∑
i=1

fi(α)βi =

n∑
i=1

fi

 n∑
j=1

cjβj

βi

=

n∑
i=1

n∑
j=1

fi (cjβj)βi

=

n∑
i=1

n∑
j=1

cjfi (βj)βi

=

n∑
i=1

n∑
j=1

cjδijβi

=

n∑
i=1

ciβi = α



6. State the definition of the transpose T t of a linear transformation T : V →W .

The transpose T t is the linear transformation T t : W ∗ → V ∗ defined as T t(f) = fT .

7. Suppose V is the space of all polynomials with coefficients in R, and let D : V → V be the differentiation operator.
(That is, D(f) is the derivative of f .)

(a) Describe the null space of Dt.

We claim that the null space of Dt is trivial, that is, Null(Dt) = {0}, where 0 is the zero functional 0 ∈ V ∗.
To see this, suppose f ∈ Null(Dt). We will show that f = 0. Because f ∈ Null(Dt), we know Dt(f) = 0, which
by definition of the transpose means fD = 0. Therefore

f(D(g)) = 0 for any polynomial g.

Now let p ∈ V be any polynomial, and choose any antiderivative P =
∫
p(x)dx. That is, P is a polynomial for

which D(P ) = p. Notice that f(p) = f(D(P )) = 0 (by the above boxed equation).

In summary, our functional f ∈ Null(Dt) has the property f(p) = 0 for any polynomial p ∈ V . Thus f is the zero
functional. Consequently Null(Dt) = {0}.

(b) Let f ∈ V ∗ be defined as f(p) =

∫ 1

0

p(x)dx. Find Dt(f). That is, for any p ∈ V , give a formula for Dt(f)(p).

Answer: Dt(f)(p) = fD(p) = f(p′) =

∫ 1

0

p′(x)dx = p(1)− p(0), by the Fundamental Theorem of Calculus.

Thus Dt(f)(p) = p(1)− p(0).


