\qquad
Answer in the space provided. Closed book. No calculators. Please put all phones, etc., away.

1. Suppose $T: V \rightarrow W$ is a linear transformation. Prove that the range of T is a subspace of W.

Proof: Suppose $c \in \mathbb{F}$ and $\alpha, \beta \in \operatorname{Range}(T)$. We must show that $c \alpha+\beta \in \operatorname{Range}(T)$.
Because $\alpha, \beta \in \operatorname{Range}(T)$, we know that $\alpha=T(\gamma)$ and $\beta=T(\delta)$ for some $\gamma, \delta \in V$.
Then $c \alpha+\beta=c T(\gamma)+T(\delta)=T(c \gamma)+T(\delta)=T(c \gamma+\delta)$, by linearity of T.
But now we have $c \alpha+\beta=T(c \gamma+\delta) \in \operatorname{Range}(T)$.
It follows that Range (T) is a subspace of W.
2. Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation for which $T^{2}=T$.

Show that there is a basis \mathscr{B} of \mathbb{R}^{2} for which $[T]_{\mathscr{B}}$ is one of the matrices $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, or $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
Consider the following three mutually exclusive and exhaustive cases.
CASE 1: Say T is the zero transformation, that is, $T(\alpha)=0$ for all $\alpha \in \mathbb{R}^{2}$. Let $\mathscr{B}=\left\{\beta_{1}, \beta_{2}\right\}$ be any basis of \mathbb{R}^{2}. Then $T\left(\beta_{1}\right)=0=0 \beta_{1}+0 \beta_{2}$, which means $\left[T\left(\beta_{1}\right)\right]_{\mathscr{B}}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Also $T\left(\beta_{2}\right)=0=0 \beta_{1}+0 \beta_{2}$, so $\left[T\left(\beta_{2}\right)\right]_{\mathscr{B}}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Now $[T]_{\mathscr{B}}=\left[\left[T\left(\beta_{1}\right)\right]_{\mathscr{B}}\left[T\left(\beta_{2}\right)\right]_{\mathscr{B}}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.

CASE 2: Say T is the identity transformation, that is, $T(\alpha)=\alpha$ all $\alpha \in \mathbb{R}^{2}$. Let $\mathscr{B}=\left\{\beta_{1}, \beta_{2}\right\}$ be any basis of \mathbb{R}^{2}. Then $T\left(\beta_{1}\right)=\beta_{1}=1 \beta_{1}+0 \beta_{2}$, which means $\left[T\left(\beta_{1}\right)\right]_{\mathscr{B}}=\left[\begin{array}{c}1 \\ 0\end{array}\right]$. Also $T\left(\beta_{2}\right)=\beta_{2}=0 \beta_{1}+1 \beta_{2}$, so $\left[T\left(\beta_{2}\right)\right]_{\mathscr{B}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Now $[T]_{\mathscr{B}}=\left[\left[T\left(\beta_{1}\right)\right]_{\mathscr{B}}\left[T\left(\beta_{2}\right)\right]_{\mathscr{B}}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

CASE 3: Say T is neither the identity transformation nor the zero transformation. Since $T \neq O$, there is a vector $\gamma \in V$ for which $T(\gamma) \neq 0$. Since $T \neq I$, there is a vector $\delta \in V$ for which $\delta-T(\delta) \neq 0$. Put $\beta_{1}=T(\gamma)$ and $\beta_{2}=\delta-T(\delta)$. Notice $T\left(\beta_{1}\right)=T(T(\gamma))=T^{2}(\gamma)=T(\gamma)=\beta_{1}$ and $T\left(\beta_{2}\right)=T(\delta-T(\delta))=T(\delta)-T^{2}(\delta)=T(\delta)-T(\delta)=0$.
Put $\mathscr{B}=\left\{\beta_{1}, \beta_{2}\right\}$, which is a basis as follows: As $|\mathscr{B}|=2=\operatorname{dim}\left(\mathbb{R}^{2}\right)$ we only need to verify that \mathscr{B} is independent. If $x \beta_{1}+y \beta_{2}=0$, then $T\left(x \beta_{1}+y \beta_{2}\right)=T(0)$, which is $x T\left(\beta_{1}\right)+y T\left(\beta_{2}\right)=0$, or $x \beta_{1}+0=0$, and this implies $x=0$. Then from $x \beta_{1}+y \beta_{2}=0$ we get $y \beta_{2}=0$, so $y=0$ too. Thus the set \mathscr{B} is linearly independent, and hence a basis.
Note $T\left(\beta_{!}\right)=\beta_{1}=1 \beta_{1}+0 \beta_{2}$, so $\left[T\left(\beta_{1}\right)\right]_{\mathscr{B}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Also $T\left(\beta_{2}\right)=0=0 T\left(\beta_{1}\right)+0 \beta_{2}$, so $\left[T\left(\beta_{2}\right)\right]_{\mathscr{B}}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Thus $[T]_{\mathscr{B}}=\left[\left[T\left(\beta_{1}\right)\right]_{\mathscr{B}}\left[T\left(\beta_{2}\right)\right]_{\mathscr{B}}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
3. Suppose $T: V \rightarrow V$ is a linear operator on a 3 -dimensional vector space V.

Suppose there is a vector $\alpha \in V$ for which $T^{2}(\alpha) \neq 0$ but $T^{3}(\alpha)=0$.
(a) Show that the set $\mathscr{B}=\left\{\alpha, T(\alpha), T^{2}(\alpha)\right\}$ is a basis for V.

Because $|\mathscr{B}|=3=\operatorname{dim}(V)$, we only need to verify that \mathscr{B} is independent. Thus suppose

$$
\begin{equation*}
x \alpha+y T(\alpha)+z T^{2}(\alpha)=0 \tag{1}
\end{equation*}
$$

Apply T to both sides. We get $T\left(x \alpha+y T(\alpha)+z T^{2}(\alpha)\right)=T(0)$, which is $x T(\alpha)+y T^{2}(\alpha)+z T^{3}(\alpha)=0$, or

$$
\begin{equation*}
x T(\alpha)+y T^{2}(\alpha)=0 \tag{2}
\end{equation*}
$$

(since $T^{3}(\alpha)=0$). From (2) we get $T\left(x T(\alpha)+y T^{2}(\alpha)\right)=T(0)$, which is $x T^{2}(\alpha)+y T^{3}(\alpha)=0$, or

$$
\begin{equation*}
x T^{2}(\alpha)=0 \tag{3}
\end{equation*}
$$

From (3) we get $x=0$. Plugging this into (2) yields $y=0$. Then (1) yields $z=0$. Since $x=y=z=0$, we have shown that \mathscr{B} is independent, hence a basis.
(b) Find the matrix of T relative to \mathscr{B}, that is, find $[T]_{\mathscr{B}}$.

Note $T(\alpha)=0 \alpha+1 T(\alpha)+0 T^{2}(\alpha)$, which means $[T(\alpha)]_{\mathscr{B}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
Also $T(T(\alpha))=0 \alpha+0 T(\alpha)+1 T^{2}(\alpha)$, which means $[T(T(\alpha))]_{\mathscr{B}}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
Finally $T\left(T^{2}(\alpha)\right)=0=0 \alpha+0 T(\alpha)+0 T^{2}(\alpha)$, which means $\left[T\left(T^{2}(\alpha)\right)\right]_{\mathscr{B}}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
Consequently $[T]_{\mathscr{B}}=\left[[T(\alpha)]_{\mathscr{B}} \quad[T(T(\alpha))]_{\mathscr{B}} \quad\left[T\left(T^{2}(\alpha)\right)\right]_{\mathscr{B}}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$.
4. Consider the basis $\mathscr{B}=\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ of \mathbb{R}^{2}. Find the dual basis \mathscr{B}^{*}.

Let's begin by finding two functionals that are zero on the second and first basis element, respectively.
Define $f_{1} \in\left(\mathbb{R}^{2}\right)^{*}$ as $f_{1}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=x . \quad$ Then $f_{1}\left(\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)=1$ and $f_{1}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=0$.
Define $f_{2} \in\left(\mathbb{R}^{2}\right)^{*}$ as $f_{2}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=x+y . \quad$ Then $f_{2}\left(\left[\begin{array}{r}1 \\ -1\end{array}\right]\right)=0$ and $f_{2}\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=1$.

Then $\mathscr{B}^{*}=\left\{f_{1}, f_{2}\right\}$.
5. Suppose a vector space V has basis $\mathscr{B}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ and dual basis $\mathscr{B}^{*}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$.

Let $\alpha \in V$. Derive the formula $\alpha=\sum_{i=1}^{n} f_{i}(\alpha) \beta_{i}$.

Take an arbitrary $\alpha \in V$. We know we can write α as $\alpha=\sum_{j=1}^{n} c_{j} \beta_{j}$. Now observe that

$$
\begin{aligned}
\sum_{i=1}^{n} f_{i}(\alpha) \beta_{i} & =\sum_{i=1}^{n} f_{i}\left(\sum_{j=1}^{n} c_{j} \beta_{j}\right) \beta_{i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i}\left(c_{j} \beta_{j}\right) \beta_{i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{j} f_{i}\left(\beta_{j}\right) \beta_{i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} c_{j} \delta_{i j} \beta_{i} \\
& =\sum_{i=1}^{n} c_{i} \beta_{i}=\alpha
\end{aligned}
$$

6. State the definition of the transpose T^{t} of a linear transformation $T: V \rightarrow W$.

The transpose T^{t} is the linear transformation $T^{t}: W^{*} \rightarrow V^{*}$ defined as $T^{t}(f)=f T$.
7. Suppose V is the space of all polynomials with coefficients in \mathbb{R}, and let $D: V \rightarrow V$ be the differentiation operator. (That is, $D(f)$ is the derivative of f.)
(a) Describe the null space of D^{t}.

We claim that the null space of D^{t} is trivial, that is, $\operatorname{Null}\left(D^{t}\right)=\{0\}$, where 0 is the zero functional $0 \in V^{*}$. To see this, suppose $f \in \operatorname{Null}\left(D^{t}\right)$. We will show that $f=0$. Because $f \in \operatorname{Null}\left(D^{t}\right)$, we know $D^{t}(f)=0$, which by definition of the transpose means $f D=0$. Therefore

$$
f(D(g))=0 \text { for any polynomial } g .
$$

Now let $p \in V$ be any polynomial, and choose any antiderivative $P=\int p(x) d x$. That is, P is a polynomial for which $D(P)=p$. Notice that $f(p)=f(D(P))=0$ (by the above boxed equation).

In summary, our functional $f \in \operatorname{Null}\left(D^{t}\right)$ has the property $f(p)=0$ for any polynomial $p \in V$. Thus f is the zero functional. Consequently $\operatorname{Null}\left(D^{t}\right)=\{0\}$.
(b) Let $f \in V^{*}$ be defined as $f(p)=\int_{0}^{1} p(x) d x$. Find $D^{t}(f)$. That is, for any $p \in V$, give a formula for $D^{t}(f)(p)$.

Answer: $D^{t}(f)(p)=f D(p)=f\left(p^{\prime}\right)=\int_{0}^{1} p^{\prime}(x) d x=p(1)-p(0)$, by the Fundamental Theorem of Calculus.
Thus $D^{t}(f)(p)=p(1)-p(0)$.

