Test One	Advanced Linear Algebra	September 27, 2018
	MATH 610	
Name:	R. Hammack	Score:

1. Suppose $T: V \to W$ is a linear transformation. Prove that the range of T is a subspace of W.

2. Suppose $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation for which $T^2 = T$. Show that there is a basis \mathscr{B} of \mathbb{R}^2 for which $[T]_{\mathscr{B}}$ is one of the matrices $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, or $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. 3. Suppose $T:V\to V$ is a linear operator on a 3-dimensional vector space V.

Suppose there is a vector $\alpha \in V$ for which $T^2(\alpha) \neq 0$ but $T^3(\alpha) = 0$.

(a) Show that the set $\mathscr{B} = \{ \alpha, T(\alpha), T^2(\alpha) \}$ is a basis for V.

(b) Find the matrix of T relative to \mathscr{B} , that is, find $[T]_{\mathscr{B}}$.

4. Consider the basis $\mathscr{B} = \left\{ \begin{bmatrix} 1\\ -1 \end{bmatrix}, \begin{bmatrix} 0\\ 1 \end{bmatrix} \right\}$ of \mathbb{R}^2 . Find the dual basis \mathscr{B}^* .

5. Suppose a vector space V has basis $\mathscr{B} = \{\beta_1, \beta_2, \dots, \beta_n\}$ and dual basis $\mathscr{B}^* = \{f_1, f_2, \dots, f_n\}$. Let $\alpha \in V$. Derive the formula $\alpha = \sum_{i=1}^n f_i(\alpha)\beta_i$. 6. State the definition of the transpose T^t of a linear transformation $T: V \to W$.

- 7. Suppose V is the space of all polynomials with coefficients in \mathbb{R} , and let $D: V \to V$ be the differentiation operator. (That is, D(f) is the derivative of f.)
 - (a) Describe the null space of D^t .

(b) Let $f \in V^*$ be defined as $f(p) = \int_0^1 p(x) dx$. Find $D^t(f)$. That is, for any $p \in V$, give a formula for $D^t(f)(p)$.