1. Suppose $T: V \rightarrow W$ is a linear transformation. Prove that the range of T is a subspace of W.
2. Suppose $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation for which $T^{2}=T$.

Show that there is a basis \mathscr{B} of \mathbb{R}^{2} for which $[T]_{\mathscr{B}}$ is one of the matrices $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, or $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.
3. Suppose $T: V \rightarrow V$ is a linear operator on a 3-dimensional vector space V.

Suppose there is a vector $\alpha \in V$ for which $T^{2}(\alpha) \neq 0$ but $T^{3}(\alpha)=0$.
(a) Show that the set $\mathscr{B}=\left\{\alpha, T(\alpha), T^{2}(\alpha)\right\}$ is a basis for V.
(b) Find the matrix of T relative to \mathscr{B}, that is, find $[T]_{\mathscr{B}}$.
4. Consider the basis $\mathscr{B}=\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ of \mathbb{R}^{2}. Find the dual basis \mathscr{B}^{*}.
5. Suppose a vector space V has basis $\mathscr{B}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\}$ and dual basis $\mathscr{B}^{*}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$. Let $\alpha \in V$. Derive the formula $\alpha=\sum_{i=1}^{n} f_{i}(\alpha) \beta_{i}$.
6. State the definition of the transpose T^{t} of a linear transformation $T: V \rightarrow W$.
7. Suppose V is the space of all polynomials with coefficients in \mathbb{R}, and let $D: V \rightarrow V$ be the differentiation operator. (That is, $D(f)$ is the derivative of f.)
(a) Describe the null space of D^{t}.
(b) Let $f \in V^{*}$ be defined as $f(p)=\int_{0}^{1} p(x) d x$. Find $D^{t}(f)$. That is, for any $p \in V$, give a formula for $D^{t}(f)(p)$.

