Quiz 2

Name:

October 11, 2018

Score: _____

Directions: There are TWO pages. Please answer in the space provided. No calculators. Please put all phones, etc., away.

1. Let $A = \begin{bmatrix} 2 & 5 \\ 0 & 1 \end{bmatrix}$. Find the monic polynomial $p \in \mathbb{R}[x]$ of lowest degree for which p(A) = O.

That is, find the monic generator of the ideal $I = \{ f \in \mathbb{R}[x] \mid f(A) = O \}.$

Solution: Note that p must have degree greater than 1 because otherwise p(x) = x + a for some $a \in \mathbb{R}$, and then $p(A) = \begin{bmatrix} 2+a & 5\\ 0 & 1+a \end{bmatrix}$, which does not equal O for any a.

Consider $p(x) = (x-2)(x-1) = x^2 - 3x + 2$, which is monic of degree 2. Observe that $p(A) = (A-2I)(A-I) = \begin{bmatrix} 0 & 5\\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 5\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix} = O.$

ANSWER: $p(x) = x^2 - 3x + 2$.

2. Let $V = \{(x_1, x_2, x_3, x_4, x_5, \dots) \mid x_i \in \mathbb{R}\}$ be the vector space (over \mathbb{R}) of all infinite sequences with terms in \mathbb{R} . Let $T: V \to V$ be defined as $T(x_1, x_2, x_3, x_4, x_5, \dots) = (x_2, x_3, x_4, x_5, x_6, \dots)$. That is, T shifts each term of an input sequence one position to the left, dropping the first term. Example: $T(1, 1, 2, 3, 5, 8, 13, 21, \dots) = (1, 2, 3, 5, 8, 13, 21, \dots)$. Describe the eigenvectors of T.

Solution: Suppose $(x_1, x_2, x_3, x_4, x_5, ...)$ is an eigenvector with eigenvalue λ . Then $T(x_1, x_2, x_3, x_4, x_5, ...) = \lambda(x_1, x_2, x_3, x_4, x_5, ...)$. Therefore $(x_2, x_3, x_4, x_5, x_6, ...) = (\lambda x_1, \lambda x_2, \lambda x_3, \lambda x_4, \lambda x_5, ...)$. Consequently $x_2 = \lambda x_1, x_3 = \lambda x_2, x_4 = \lambda x_3$, etc., and in general $x_{n+1} = \lambda x_n$. This means $(x_1, x_2, x_3, x_4, x_5, ...)$ is a geometric sequence in which any term is λ times the previous term.

That is, any eigenvector has form $(x_1, \lambda x_1, \lambda^2 x_1, \lambda^3 x_1, \lambda^4 x_1, \lambda^5 x_1, \dots)$ for $x_1 \neq 0$ and $\lambda \in \mathbb{R}$.

ANSWER: The eigenvectors of T are precisely the geometric sequences. (And for any such geometric sequence, its associated eigenvalue is its common ratio.)

3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined as $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.

(a) Find the eigenvalues of T.

$$\chi_T(x) = |A - xI| = \begin{vmatrix} 3 - x & 4 \\ -1 & -1 - x \end{vmatrix} = (3 - x)(-1 - x) + 4 = x^2 - 2x + 1 = (x - 1)^2.$$

Therefore the only eigenvalue is 1.

(b) Find the eigenspaces of T.

The eigenspace for 1 is the null space of $A - 1I = A - I = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$, that is, the eigenspace for 1 is the set of all vectors $\begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2$ satisfying $\begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Solving this system with row reduction yields $\begin{bmatrix} 2 & 4 & | & 0 \\ -1 & -2 & | & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$, or x = -2y. Therefore the eigenspace for 1 is the subspace $\left\{ \begin{bmatrix} -2y \\ y \end{bmatrix} \mid y \in \mathbb{R} \right\} = \operatorname{Span}\left(\begin{bmatrix} -2 \\ 1 \end{bmatrix} \right)$. This is the only eigenspace, and it is one-dimensional.

(c) Is T diagonalizable? Explain.

No. There is only one eigenspace, and it is one-dimensional.

Thus the sum of the dimensions of the eigenspaces does not equal the dimension of the whole space \mathbb{R}^2 . It is therefore impossible to find a basis for the two-dimensional space \mathbb{R}^2 that consists of eigenvectors for T. Consequently T is NOT diagonalizable.