Quiz 2
Advanced Linear Algebra
October 11, 2018
MATH 610
Name: \qquad R. Hammack

Score: \qquad
Directions: There are TWO pages. Please answer in the space provided. No calculators. Please put all phones, etc., away.

1. Let $A=\left[\begin{array}{ll}2 & 5 \\ 0 & 1\end{array}\right]$. Find the monic polynomial $p \in \mathbb{R}[x]$ of lowest degree for which $p(A)=O$.

That is, find the monic generator of the ideal $I=\{f \in \mathbb{R}[x] \mid f(A)=O\}$.
Solution: Note that p must have degree greater than 1 because otherwise $p(x)=x+a$ for some $a \in \mathbb{R}$, and then $p(A)=\left[\begin{array}{rr}2+a & 5 \\ 0 & 1+a\end{array}\right]$, which does not equal O for any a.

Consider $p(x)=(x-2)(x-1)=x^{2}-3 x+2$, which is monic of degree 2 .
Observe that $p(A)=(A-2 I)(A-I)=\left[\begin{array}{rr}0 & 5 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}1 & 5 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=O$.
ANSWER: $p(x)=x^{2}-3 x+2$.
2. Let $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right) \mid x_{i} \in \mathbb{R}\right\}$ be the vector space (over \mathbb{R}) of all infinite sequences with terms in \mathbb{R}. Let $T: V \rightarrow V$ be defined as $T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right)$. That is, T shifts each term of an input sequence one position to the left, dropping the first term. Example: $T(1,1,2,3,5,8,13,21, \ldots)=(1,2,3,5,8,13,21, \ldots)$. Describe the eigenvectors of T.

Solution: Suppose ($x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots$) is an eigenvector with eigenvalue λ.
Then $T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)=\lambda\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)$.
Therefore $\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right)=\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}, \lambda x_{4}, \lambda x_{5}, \ldots\right)$.
Consequently $x_{2}=\lambda x_{1}, x_{3}=\lambda x_{2}, x_{4}=\lambda x_{3}$, etc., and in general $x_{n+1}=\lambda x_{n}$.
This means $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)$ is a geometric sequence in which any term is λ times the previous term.
That is, any eigenvector has form $\left(x_{1}, \lambda x_{1}, \lambda^{2} x_{1}, \lambda^{3} x_{1}, \lambda^{4} x_{1}, \lambda^{5} x_{1}, \ldots\right)$ for $x_{1} \neq 0$ and $\lambda \in \mathbb{R}$.
ANSWER: The eigenvectors of T are precisely the geometric sequences. (And for any such geometric sequence, its associated eigenvalue is its common ratio.)
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation defined as $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}3 & 4 \\ -1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$.
(a) Find the eigenvalues of T.
$\chi_{T}(x)=|A-x I|=\left|\begin{array}{cc}3-x & 4 \\ -1 & -1-x\end{array}\right|=(3-x)(-1-x)+4=x^{2}-2 x+1=(x-1)^{2}$.
Therefore the only eigenvalue is 1 .
(b) Find the eigenspaces of T.

The eigenspace for 1 is the null space of $A-1 I=A-I=\left[\begin{array}{rr}2 & 4 \\ -1 & -2\end{array}\right]$, that is, the eigenspace for 1 is the set of all vectors $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}$ satisfying $\left[\begin{array}{rr}2 & 4 \\ -1 & -2\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Solving this system with row reduction yields $\left[\begin{array}{rr|r}2 & 4 & 0 \\ -1 & -2 & 0\end{array}\right] \rightarrow\left[\begin{array}{ll|l}1 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$, or $x=-2 y$.
Therefore the eigenspace for 1 is the subspace $\left\{\left.\left[\begin{array}{r}-2 y \\ y\end{array}\right] \right\rvert\, y \in \mathbb{R}\right\}=\operatorname{Span}\left(\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right)$.
This is the only eigenspace, and it is one-dimensional.
(c) Is T diagonalizable? Explain.

No. There is only one eigenspace, and it is one-dimensional.
Thus the sum of the dimensions of the eigenspaces does not equal the dimension of the whole space \mathbb{R}^{2}.
It is therefore impossible to find a basis for the two-dimensional space \mathbb{R}^{2} that consists of eigenvectors for T.
Consequently T is NOT diagonalizable.

