Quiz 2

Name:

October 11, 2018

Score: ____

Directions: There are TWO pages. Please answer in the space provided. No calculators. Please put all phones, etc., away.

1. Let $A = \begin{bmatrix} 2 & 5 \\ 0 & 1 \end{bmatrix}$. Find the monic polynomial $p \in \mathbb{R}[x]$ of lowest degree for which p(A) = O.

That is, find the monic generator of the ideal $I = \{f \in \mathbb{R}[x] \mid f(A) = O\}.$

2. Let $V = \{(x_1, x_2, x_3, x_4, x_5, \ldots) \mid x_i \in \mathbb{R}\}$ be the vector space (over \mathbb{R}) of all infinite sequences with terms in \mathbb{R} . Let $T: V \to V$ be defined as $T(x_1, x_2, x_3, x_4, x_5, \ldots) = (x_2, x_3, x_4, x_5, x_6, \ldots)$. That is, T shifts each term of an input sequence one position to the left, dropping the first term. Example: $T(1, 1, 2, 3, 5, 8, 13, 21, \ldots) = (1, 2, 3, 5, 8, 13, 21, \ldots)$. Describe the eigenvectors of T.

- 3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation defined as $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$.
 - (a) Find the eigenvalues of T.

(b) Find the eigenspaces of T.

(c) Is T diagonalizable? Explain.