Quiz 2
Name: \qquad R. Hammack

Score: \qquad

Directions: There are TWO pages. Please answer in the space provided. No calculators. Please put all phones, etc., away.

1. Let $A=\left[\begin{array}{ll}2 & 5 \\ 0 & 1\end{array}\right]$. Find the monic polynomial $p \in \mathbb{R}[x]$ of lowest degree for which $p(A)=O$.

That is, find the monic generator of the ideal $I=\{f \in \mathbb{R}[x] \mid f(A)=O\}$.
2. Let $V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right) \mid x_{i} \in \mathbb{R}\right\}$ be the vector space (over \mathbb{R}) of all infinite sequences with terms in \mathbb{R}. Let $T: V \rightarrow V$ be defined as $T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, \ldots\right)=\left(x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, \ldots\right)$. That is, T shifts each term of an input sequence one position to the left, dropping the first term. Example: $T(1,1,2,3,5,8,13,21, \ldots)=(1,2,3,5,8,13,21, \ldots)$. Describe the eigenvectors of T.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation defined as $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{rr}3 & 4 \\ -1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$.
(a) Find the eigenvalues of T.
(b) Find the eigenspaces of T.
(c) Is T diagonalizable? Explain.

