Name: \qquad R. Hammack

Score: \qquad

Directions: There are TWO pages. Please answer in the space provided. No calculators. Please put all phones, etc., away.

1. State what it means for a subset S of a vector space V over \mathbb{F} to be linearly dependent.
2. Let V be the vector space (over \mathbb{R}) of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

Let $W=\{f \in V \mid f(-x)=f(x)$ for all $x \in \mathbb{R}\}$. That is, W is the set of all even functions in V.
Let $X=\{f \in V \mid f(-x)=-f(x)$ for all $x \in \mathbb{R}\}$. That is, X is the set of all odd functions in V.
(a) Prove that W is a subspace of V. (Note that X is a also a subspace of V, but you don't need to prove it.)
(b) Show that the set $W \cup X$ spans V.
3. Suppose V is a finite-dimensional vector space and $T: V \rightarrow V$ is a linear transformation having the property $\operatorname{Range}(T)=\operatorname{Null}(T)$, that is, the range of T and the null space of T are the same subspace.
(a) Show that $\operatorname{dim}(V)$ is an even number.
(b) Give an example of such a T and V .

