Section 9.4 Irreducibility Criteria

Recall: \(p(x) \in \mathbb{R}[x] \) is irreducible if \(p(x) \neq 0 \) and whenever \(f(x) = a(x) \cdot b(x) \), one of \(a(x) \) or \(b(x) \) is a unit.

If \(R \) is a field, \(f(x) \) being irreducible means it can't be factored into two polynomials of lower degree. Ex: \(p(x) = x^2 + 1 \) irreducible in \(\mathbb{R}[x] \), reducible in \(\mathbb{C}[x] \). What about \(\mathbb{Z}_5[x] \)?

Deciding whether or not a polynomial is irreducible is a tricky business. We now develop some criteria for this.

Proposition 9 Let \(p(x) \in \mathbb{F}[x] \) where \(\mathbb{F} \) is a field.

Then \(p(x) = (x - a) \cdot g(x) \iff p(a) = 0 \)

Example Is \(p(x) = 1 + 3x + 4x^2 + x^3 + x^4 + 2x^5 + 3x^6 \) irreducible in \(\mathbb{Z}_5[x] \)? No because \(p(1) = 0 \)

we know \(p(x) = (x-1) \cdot g(x) = (x+4) \cdot g(x) \)

[can find \(g(x) \) with long division].

Strategy To see if \(p(x) \) factors with a linear term (in a finite field) Just check find roots \(a \) of \(p(x) \).

Then we know \(p(x) = (x-a) \cdot g(x) \).

But checking for zeros doesn't guarantee an answer.

Does \(f(x) = x^4 + 2x^2 + 1 \) factor over \(\mathbb{Z}_3[x] \)?

\[
\begin{align*}
f(0) &= 1 \quad \rightarrow \text{Doesn't factor with a linear term, but} \quad x^4 + 2x^2 + 1 = (x^2 + 1)(x^2 + 1) \\
f(1) &= 1 \\
f(2) &= 1
\end{align*}
\]

Proposition 10 A polynomial of degree 2 or 3 over a field \(\mathbb{F} \) is reducible \(\iff \) it has a root in \(\mathbb{F} \).
Example: Is \(x^2 + 2x + 1 \) reducible over \(\mathbb{Z}_3 \)?

\[
f(0) = 1 \\
f(1) = 0 \\
f(2) = 0
\]

\[x^2 + 2x + 1 = (x - 2)(x - 2) = (x + 1)(x + 1)\]

Observation: Suppose \(f(x) = a_0 + a_1 x + \ldots + x^n \in \mathbb{Z}[x] \) (monic). If \(f(a) = 0 \), some \(a \in \mathbb{Z} \), then \(a \mid a_0 \).

Reason: \(f(a) = 0 \Rightarrow f(x) = (x - a)(x^{n - 1} + \ldots + b) \). \(ab = a_0 \).

Example: \(f(x) = x^4 + 5x^3 + 5x^2 - 5x - 6 \). Possible roots: \(\pm 1, \pm 2, \pm 3, \pm 6 \).

Test:

\[
\begin{align*}
f(1) &= 0 \\
f(-1) &= 0 \\
f(2) &= 0 \\
f(-2) &= 0 \\
f(-3) &= 0
\end{align*}
\]

Proposition 11: Suppose \(f(x) = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{Z}[x] \). If \(f(\frac{a}{2}) = 0 \), then \(r \mid a_0 \) and \(s \mid a_n \).

Proposition 12: Suppose \(I \subseteq R \) is a proper ideal, \(p(x) \in R[x] \) monic. If \(p(x) \) factors in \(R[x] \), then \(\overline{p(x)} \) factors in \(R/I[x] \), i.e., \(p(x) \) irreducible in \(R[x] \) if and only if \(\overline{p(x)} \) is irreducible in \(R/I[x] \).

Corollary: (Eisenstein's Criterion for \(\mathbb{Z}[x] \))

Suppose \(f(x) = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{Z}[x] \) and \(p \) is prime. Then \(f(x) \) is irreducible if \(p \mid a_i \) for all \(i \), but \(p^2 \nmid a_0 \).

Example: \(f(x) = x^{10} - 25x^3 + 10x^2 - 30 \)

\[
\begin{array}{c|c|c|c|c}
& 5125 & 5110 & 5130 & 5^2 30 \\
\uparrow & \uparrow & \uparrow & \uparrow & \\
5 & 125 & 5 & 10 & 5 & 30
\end{array}
\]

Thus \(f(x) \) is irreducible in \(\mathbb{Q}[x] \) and \(\mathbb{Z}[x] \).
Section 9.5 Polynomial Rings on Fields II

Proposition 15 Suppose F is a field. Then:

$R[x]/(f(x))$ is a field $\iff f(x)$ is irreducible.

i.e. $(f(x))$ is a maximal ideal $\iff f(x)$ is irreducible.

Proof $R[x]/(f(x))$ is a field $\iff (f(x))$ is maximal

$\iff (f(x))$ is prime

Def of prime $\iff f(x)$ is prime

Ch 8 Prop 12 $\iff f(x)$ is irreducible

Example x^2+1 is irreducible in $R[x]$, and $R[x]/(x^2+1) \cong \mathbb{F}_3$

Example A field with 9 elements.

Note $f(x) = x^2+1$ is irreducible in $\mathbb{Z}/3\mathbb{Z}$

Thus $\mathbb{Z}/3\mathbb{Z} [x]/(x^2+1) = F$ is a field.

$F = \left\{ a + bx \mid a, b \in \mathbb{Z}/3\mathbb{Z} \right\}$, so $|F| = 9$.

Addition: $(a+bx) + (c+dx) = (a+c) + (b+d)x$

Multiplication: $(a+bx)(c+dx) = (ac - bd) + (ad+bc)x$

$-1 = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}x$

Reason $(a+bx)\left(\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}x\right)$

$= \frac{a^2+b^2}{a^2+b^2} + 0x = 1$.
Proposition 16 Suppose \(g(x) \in \mathbb{F}[x] \) is monic, and
\[
g(x) = f_1(x)^{n_1} f_2(x)^{n_2} \cdots f_k(x)^{n_k}
\]
be its prime factorization. Then
\[
\mathbb{F}[x]/(g(x)) \cong \mathbb{F}[x]/(f_1(x)^{n_1}) \times \cdots \times \mathbb{F}[x]/(f_k(x)^{n_k}).
\]

Example
\[
\mathbb{R}[x]/(x^2-1) \cong \mathbb{R}[x]/(x+1) \times \mathbb{R}[x]/(x-1)
\cong \mathbb{R} \times \mathbb{R}
\]
(not a field!)
