Section 4.3 Polynomial Rings that are UFDs

Recall:
1. \(R[x_1, x_2, \ldots, x_n] = R[x_i, x_j, \ldots, x_k][x_n] \)
2. Any I.D. \(R \) has a field of fractions \(F = \{ \frac{a}{b} | a, b \in R, b \neq 0 \} \), \(R \subseteq F \)
3. Corollary 2: Given \(I \subseteq R \), \(R[x]/(I) \cong R/I[x] \)
 - If \(I \) prime in \(R \), then \((I) \) prime in \(R[x] \)

We've seen how properties of \(R \) influence properties of \(R[x] \).

1. \(R \) is a field \(\Rightarrow \) \(R[x] \) is an ED, PID, UFD.
2. \(R \) is an I.D. \(\iff \) \(R[x] \) is an I.D.

 \(\iff R[x_i, x_j, \ldots, x_k] \) is an I.D.

Today's Goal:

Theorem 7 \(R \) is a UFD \(\iff \) \(R[x] \) is a UFD

Corollary 8 \(R \) is a UFD \(\iff \) \(R[x_1, x_2, x_3, \ldots, x_n] \) is a UFD.

The following question is a key to establishing these results. It is answered affirmatively by the so-called Gauss Lemma.

Question: If \(f(x) \in \mathbb{Z}[x] \subseteq \mathbb{Q}[x] \) factors in \(\mathbb{Q}[x] \), does it factor in \(\mathbb{Z}[x] \)?
- If \(f(x) \in R[x] \subseteq F[x] \) factors in \(F[x] \), does it factor in \(R[x] \)?

Proposition 5 Gauss' Lemma

Let \(R \) be an I.D. with field of fractions \(F \) (\(\subseteq \mathbb{Q} \)).

If \(p(x) \in R[x] \) is reducible in \(F[x] \), then it's reducible in \(R[x] \).

Specifically, if \(p(x) = \frac{A(x)B(x)}{R[x]} \), \(\frac{A(x)B(x)}{F[x]} \)

then \(\exists r, s \in F \) such that

\[p(x) = \frac{rA(x)sB(x)}{R[x]} \]

[Note: necessarily \(rs = 1 \)]
Proof (outline)

Suppose \(p(x) = \frac{A(x)}{\text{R}[x]} \cdot \frac{B(x)}{\text{F}[x]} \).

Then \(\text{d} p(x) = \frac{\text{d} A(x)}{\text{R}[x]} \cdot \frac{e B(x)}{\text{R}[x]} \) for some \(d, e \in \text{R} \).

So \(p_1 p_2 p_3 \ldots p_k p(x) = \frac{d A(x)}{\text{R}[x]} \cdot e B(x) \) \(\ldots \) prime factoring of \(d e \).

Thus \((p_i) \subseteq \text{R}[x]\) is prime ideal in \(\text{R} \).

Corollary 2: \(\text{R}[x] / (p_i) = \text{R}[x] / p_i \text{R}[x] \cong \text{R}/(p_i) [x] \).

Then \(\text{R} / (p_i) \) is ID, \(\Rightarrow \) \(\text{R}[x] / p_i \text{R}[x] \) is ID in \(\text{R}[x] / p_i \text{R}[x] \).

Note: \(\frac{\text{d} A(x)}{\text{R}[x]} \cdot e B(x) + p_i \text{R}[x] = 0 + p_i \text{R}[x] \) in \(\text{R}[x] / p_i \text{R}[x] \).

Say \(\frac{\text{d} A(x)}{\text{R}[x]} = 0 \). \(\Rightarrow \) \(\text{d} A(x) \in p_i \text{R}[x] \). \(\Rightarrow \) \(\frac{1}{p_i} \frac{\text{d} A(x)}{\text{R}[x]} \).

\(\ldots \) \(p_2 p_3 \ldots p_k p(x) = \frac{1}{p_i} \frac{\text{d} A(x)}{\text{R}[x]} \cdot e B(x) \) \(\ldots \) \(\text{R}[x] \).

Continue process with \(p_2 \) instead of \(p_i \), etc.

Get: \(p(x) = \frac{r A(x)}{\text{R}[x]} \cdot \frac{SB(x)}{\text{R}[x]} \).

\(\square \)
Theorem 7 \(R \) is UFD \(\iff \mathbb{R}[x] \) is UFD

Proof \((\Leftarrow) \) Trivial because \(\mathbb{R} \subseteq \mathbb{R}[x] \).

\((\Rightarrow) \) Basic Idea: \(\mathbb{R}[x] \subseteq \mathbb{F}[x] \)

Suppose \(p(x) \in \mathbb{R}[x] \). Need to show \(p(x) \) factors uniquely.

Note that \(p(x) \in \mathbb{F}[x] \) (UFD)

Unique factorization in \(\mathbb{F}[x] \):

\[
p(x) = q_1(x) q_2(x) \ldots q_k(x),
\]

Now use Gauss' Lemma to connect this to a unique factorization in \(\mathbb{R}[x] \).

Corollary 8 \(R \) is UFD \(\iff \mathbb{R}[x_1] \) is UFD.

Proof Follows from Theorem 7 and \(\mathbb{R}[x_1, x_2, \ldots, x_n] = \mathbb{R}[x_1, x_2, \ldots, x_{n-1}][x_n] \).