Section 10.3 Generation of Modules, Direct Sums, Free Modules.

In what follows we compare structures in an R-module M to vector spaces over R. All the "new" terms introduced here are entirely parallel to old ideas involving vector spaces.

VECTOR SPACES OVER R

Sum of subspaces

$V_1 + V_2 = \{ a_1 + a_2 \mid a_1 \in V_1, a_2 \in V_2 \}$

Span of a set $A = \{ a_1, a_2, \ldots, a_k \}$

$\text{Span}(A) = \{ \sum r_i a_i \mid r_i \in R, a_i \in A \}$

Finite dimensional space

If A is finite, then $\text{Span}(A)$ is a finite dimensional vector space.

One dimensional space

A subspace V is 1-D if $V = \text{Span}\{a\}$ for some vector a.

R-MODULES M

Sum of sub-modules

If N_1, N_2, \ldots, N_k are submodules of M, then their sum is

$N_1 + N_2 + \ldots + N_k = \{ a_1 + a_2 + \ldots + a_k \mid a_i \in N_i, 1 \leq i \leq k \}$

Submodule generated by $A \subset M$.

If $A \subset M$, the submodule generated by A is

$RA = \{ \sum r_i a_i \mid r_i \in R, a_i \in A \}$

If $N = RA$, we say N is generated by A. A is a set of generators for N.

$N \subset M$ is finitely generated if $N = RA$ for some finite set A. Similarly, M is finitely generated if $M = RA$ for some finite $A \subset M$.

$N \subset M$ is cyclic if there exists an $a \in M$ such that $N = Ra = \{ ra \mid r \in R \}$.
Direct Sums and Direct Products

Definition If M_1, M_2, \ldots, M_k are R-modules, their direct product is:

$$M_1 \times M_2 \times \cdots \times M_k = \{m_1, m_2, \ldots, m_k \mid m_i \in M_i \text{ } \forall i\}.$$

This is an abelian group and an R-module under addition:

$$r(m_1, m_2, \ldots, m_k) = (rm_1, rm_2, \ldots, rm_k).$$

Alternate Notation:

$$M_1 \times M_2 \times \cdots \times M_k = M_1 \oplus M_2 \oplus \cdots \oplus M_k$$

`direct product` `direct sum`.

These are the same if k is finite. The difference emerges when there are an ∞ number of factors.

Direct Product

$$M_1 \times M_2 \times M_3 \times \cdots = \{m_1, m_2, m_3, \ldots \mid m_i \in M_i \text{ } \forall i\}.$$

Direct Sum

$$M_1 \oplus M_2 \oplus M_3 \oplus \cdots = \{(m_1, m_2, m_3, \ldots) \mid m_i \in M_i \text{ and all but finitely many } m_i = 0\}.$$

Thus,

$$\bigoplus_{i=1}^{\infty} M_i \subseteq \prod_{i=1}^{\infty} M_i.$$

$$\bigoplus_{i \in I} M_i \subseteq \prod_{i \in I} M_i.$$
A decomposition theorem

For the next result, keep the following vector space picture in mind. The proof mirrors the (almost obvious) vector space setting.

\[\mathbb{R}^3 \cong V_1 \times V_2 = V_1 \oplus V_2 \]

\[V_1 \cap V_2 = \{0\} \]

Any \(z \in \mathbb{R}^3 \) has a unique expression

\[z = a_1 + \alpha_1 \quad a_1 \in V_1, \quad \alpha_1 \in V_2 \]

Many ways to write \(z \in \mathbb{R}^3 \)

Proposition 5: Suppose \(N_1, N_2, \ldots, N_k \) are submodules of the \(R \)-module \(M \). Then the following are equivalent:

1. \(\pi : N_1 \times N_2 \times \cdots \times N_k \to N_1 + N_2 + \cdots + N_k \leq M \) is a submodule isomorphism, where \(\pi(q_1, q_2, \ldots, q_k) = a_1 + a_2 + \cdots + a_k \)

2. \((N_1 + N_2 + \cdots + N_{j-1} + N_j + \cdots + N_k) \cap N_j = \{0\} \quad \forall j \)

3. Each \(z \in N_1 + N_2 + \cdots + N_k \) has a unique expression

\[z = a_1 + \alpha_1 + \cdots + a_k \quad a_i \in N_i \]

Example: \(\mathbb{Z} \)-module \(M = \mathbb{Z}/6\mathbb{Z} \)

\[N_1 = \langle 0, 2, 4 \rangle = \mathbb{Z} 2 = \text{span} \{2\} \]

\[N_2 = \langle 0, 3 \rangle = \mathbb{Z} 3 = \text{span} \{3\} \]

\[N_1 + N_2 = \langle 0, 1, 2, 3, 4, 5 \rangle = M \]

Since \(N_1 \cap N_2 = \{0\} \)

\[N_1 \times N_2 \cong N_1 + N_2 = M \]

\[(x, y) \mapsto x + y \]

Note: This is not like a vector space in that \(\text{span} \{2\} \neq \mathbb{Z} \), etc.

We next introduce the notion of free modules, for which such "one-dimensional" submodules are isomorphic to \(\mathbb{R} \).
Definition. A module F is free on a set A if for every $x \in F$, there exist unique non-zero $r_1, r_2, \ldots, r_n \in R$ and $a_1, a_2, \ldots, a_n \in A$ for which $x = \sum_{i=1}^{n} r_i a_i$. The rank of F over A is denoted by $\text{rank}_A F$.

Example. \[R^n = R \times R \times \cdots \times R \quad A = \{(100, \ldots), (010, \ldots), (001, \ldots), (0, 0, \ldots)\} \]

Theorem 6. For any set A, there is a free R-module $F(A)$ on A. Moreover, $F(A)$ satisfies the following universal property:

For any R-module M and any map $\varphi : A \to M$, there is a unique R-module homomorphism $\Phi : F(A) \to M$ with $\Phi(a_i) = \varphi(a_i)$ such that for all $a \in A$.

If A is finite, i.e., $A = \{a_1, a_2, \ldots, a_n\}$, then $F(A) = R a_1 \oplus R a_2 \oplus \cdots \oplus R a_n = R^n$.

\[F(A) = \sum_{\varphi \text{ a function } A \to R} \varphi \]

\[A \xrightarrow{\text{incl}} F(A) \]

\[M \xrightarrow{\Phi} \]