Section 2.4 Subgroups Generated by Subsets.

Goal Answer the following question:
We know \(\langle a \rangle = \{ a^n | n \in \mathbb{Z} \} = \langle \{ a^3 \} \rangle \leq G \)
What is \(\langle A \rangle \), where \(A \leq G \)?

Proposition If \(H \leq G \) and \(K \leq G \) then \(HK \leq G \).

Proposition If \(\{ H_\alpha \}_{\alpha \in I} \) is a collection of subgroups \(H_\alpha \leq G \) for each \(\alpha \in I \), then \(\bigcap_{\alpha \in I} H_\alpha \leq G \).

But keep in mind index set \(I \) could have any cardinality.

Definition Given \(A \leq G \), \(\langle A \rangle = \bigcup_{H \leq G} H \leq G \)

Example \(G = \mathbb{Z} \), \(A = \{ 7\mathbb{Z}, 36, 24 \} \)
\(\langle A \rangle = \mathbb{Z} \cap 4\mathbb{Z} \cap 3\mathbb{Z} \cap 6\mathbb{Z} \cap 12\mathbb{Z} \cap \mathbb{Z} = 12\mathbb{Z} \)

Example \(G = \mathbb{R}^\times \), \(A = \{ \pi, \sqrt{2}, 7, e, \sqrt{11} \} \)
\(\langle A \rangle = \{ \} \)

Even though the definition defines \(\langle A \rangle \) unambiguously, it's hard to say exactly what \(\langle A \rangle \) is.
Definition If $A \subseteq G$, then

\[\overline{A} = \{ a_1^{\varepsilon_1} a_2^{\varepsilon_2} a_3^{\varepsilon_3} \cdots a_n^{\varepsilon_n} \mid a_i \in A, \varepsilon_i = \pm 1 \} \]

\[= \{ a_1^{p_1} a_2^{p_2} a_3^{p_3} \cdots a_n^{p_n} \mid a_i \in A, p_i \in \mathbb{Z} \} \]

\[= \text{finite products of powers of elements of } A. \]

Proposition 9 \[\overline{A} = \langle A \rangle \]

\[\uparrow \quad \uparrow \]

of theoretical use (proofs)

of computational use (proofs)

It's good to have two different ways of looking at the same thing.

Note: If G is abelian, and $A = \{a_1, a_2, \ldots, a_k\}$, then

\[\overline{A} = \{ a_1^{p_1} a_2^{p_2} \cdots a_k^{p_k} \mid k \geq 0, p_i \in \mathbb{Z} \} \]

(in order)

Convention: \[\langle \phi \rangle = \overline{\phi} = \mathbb{Z} \]

Notation: \[\langle a_1, a_2, \ldots, a_n \rangle \]

\[\langle A \cup B \rangle = \langle A, B \rangle \]

Example \[\langle \pi, \sqrt{2}, 7, e^{\sqrt{11}} \rangle \]

\[= \{ z \pi + y\sqrt{2} + 27 + u \pi + w \sqrt{11} \mid x, y, z, u, w \in \mathbb{R} \} \]

(proper subgroup of \mathbb{R}, not cyclic)
Example: Consider \(\mathbb{Z}/36\mathbb{Z} \).

Divisors of 36: 1, 2, 3, 4, 6, 9, 12, 18, 36

Subgroups of \(\mathbb{Z}/36\mathbb{Z} \):

- \(\langle 1 \rangle = \{0, 1, 2, \ldots, 35\} = \mathbb{Z}/36\mathbb{Z} \)
- \(\langle 2 \rangle = \{0, 2, 4, \ldots, 34\} \)
- \(\langle 3 \rangle = \{0, 3, 6, \ldots, 33\} \)
- \(\langle 4 \rangle = \{0, 4, 8, 12, \ldots, 32\} \)
- \(\langle 6 \rangle = \{0, 6, 12, 18, 24, 30\} \)
- \(\langle 9 \rangle = \{0, 9, 18, 27\} \)
- \(\langle 12 \rangle = \{0, 12, 24\} \)
- \(\langle 18 \rangle = \{0, 18\} \)
- \(\langle 36 \rangle = \{0\} \)

Example: Consider \(Q_8 \).

Subgroups of \(Q_8 \):

- \(Q_8 \)
- \(\langle i \rangle = \{1, i, i^2, i^3, i^4\} = \{1, -1, i, -i\} \)
- \(\langle j \rangle = \{1, -1, i, -i\} \)
- \(\langle k \rangle = \{1, i, -1, -i\} \)
- \(\langle -1 \rangle = \{1, -1\} \)
- \(\langle 1 \rangle = \{1\} \) (Note \(\langle i, j \rangle = Q_8 \), etc)

Text makes the point that subgroup lattices can help in the computation of centralizers and centers.

\[C_{Q_8}(\langle i \rangle) = \langle i \rangle \] because this is smallest subgroup containing \(i \) that commutes with everything in \(\langle i \rangle \).

Also \(Z(Q_8) = \langle -1 \rangle = \{1, -1\} \).