Sections 7.3, Homomorphisms, Quotients, Ideals

Recall An ideal \(I \subseteq R \) is a subring for which \(rI \subseteq I \) and \(Ir \subseteq I \).

Left ideal \(I \subseteq R \) if \(rI \subseteq I \).

Right ideal \(I \subseteq R \) if \(Ir \subseteq I \).

Given an ideal \(I \subseteq R \), \(R/I = \{ r+I \mid r \in R \} \) is a ring with operations \((r+I) + (s+I) = (r+s)+I\), \((r+I)(s+I) = rs+I\). Addition identity is \(I \).

Theorem 7 (First Isomorphism Theorem for Rings)

Suppose \(\varphi : R \to S \) is a ring homomorphism. Then:

1. \(\ker \varphi \) is an ideal in \(R \), and \(R/\ker \varphi \cong \varphi(R) \subseteq S \).
2. \(\varphi = \theta \circ \pi \) in following diagram, and \(\theta \) is an isomorphism.

\[
\begin{array}{ccc}
R & \xrightarrow{\varphi} & \varphi(R) \subseteq S \\
\downarrow{\pi} & & \downarrow{\theta} \\
R/\ker \varphi & \xrightarrow{\cong} & \varphi(R) \\
\end{array}
\]

Also, if \(I \subseteq R \) is any ideal, then \(I + \ker \varphi \) is the kernel of the homomorphism \(\pi : R \to R/I \), \(\pi(r) = r+I \).

Example \(\varphi : \mathbb{R}[x] \to \mathbb{R} \) by \(\varphi(f) = f(0) \) (eval. hom.)

\(\ker \varphi = \{ \alpha_0 + \alpha_1x + \cdots + \alpha_nx^n \mid \alpha_i \in \mathbb{R}, n \geq 1 \} \)

\(\mathbb{R}[x]/\ker \varphi \cong \mathbb{R} \).

In this example, the kernel takes up "almost all" of \(\mathbb{R}[x] \). In fact there is no larger proper ideal \(I \subseteq \mathbb{R}[x] \) with \(\ker \varphi \subseteq I \subseteq \mathbb{R}[x] \).

Definition An ideal \(M \subseteq R \) is **maximal** if there is no ideal \(I \) with \(M \subseteq I \subseteq R \).

Proposition 11 In a ring with 1, every ideal is contained in some maximal ideal.

Proposition 12 Suppose \(R \) commutative. Then \(M \) maximal \(\iff \) \(R/M \) is a field.

Not \(M \) not maximal

\(\iff \exists M \subseteq I \subseteq R \)

\(\iff \exists a \in M-M \)

\(\iff (a+I)(r+I) = 0+I \iff I = 1+I \)
Definition: An ideal \(P \) in a commutative ring \(R \) is prime if for all \(a, b \in R \), \(ab \in P \Rightarrow a \in P \) or \(b \in P \).

If \(p \in \mathbb{Z} \) is prime, then \(\{ n \in \mathbb{Z} : \exists \, k \in \mathbb{Z}, nk = p \} \) is a principal ideal generated by \(p \).

Example: \(8 \notin \mathbb{Z} \) is not prime in \(\mathbb{Z} \). However, \(3 \), \(4 \notin \mathbb{Z} \), \(3 \cdot 4 = 12 \notin \mathbb{Z} \).

\[5\mathbb{Z} \] is prime in \(\mathbb{Z} \). If \(ab \in 5\mathbb{Z} \) then one of \(a, b \) is a multiple of \(5 \).

Proposition 13: Suppose \(R \) is commutative. Then \(p \) is a prime ideal in \(R \) if and only if \(R/p \) is an integral domain.

By previous two propositions, every maximal ideal is prime.

In \(p \in \mathbb{Z} \) is a maximal \(\Rightarrow \mathbb{Z}/p \) is a field \(\Rightarrow \mathbb{Z}/p \) is an integral domain.

By previous two propositions, every maximal ideal is prime.

Not every prime ideal is maximal:

Example: \(2\mathbb{Z} \) is prime because \(\mathbb{Z}/P \) is an integral domain.

It is not maximal, as follows:

\(\mathbb{Z}/P \subset \{ 2a + a_{1}x + a_{2}x^{2} + \ldots + a_{n}x^{n} | a_{i} \in \mathbb{Z} \} \subset \mathbb{Z} \).

Definition: If \(a \in R \), the principal ideal generated by \(a \) is

\[(a) = \{ \sum x_{i}a_{i} \mid x_{i} \in \mathbb{Z}, a_{i} \in R \} \subset \mathbb{Z} \]

This is the smallest ideal containing \(a \). If \(R \) is commutative,

\[(a) = \{ ra \mid r \in R \} \subset \mathbb{Z} \]

Example: \(5 \in \mathbb{Z} \), \((5) = 5\mathbb{Z} \), \(x \in (5) \iff 5 | x \).

\(a \in R \), \(x \in (a) \iff a | x \).

Principal ideals are key instruments in describing "arithmetic" in rings.

\[\mathbb{Z}/(x) = \{ 0 + a_{1}x + a_{2}x^{2} + \ldots + a_{n}x^{n} \mid a_{i} \in \mathbb{Z} \} \subset R[x] \]

\((x) = \{ 0 \} \subset R[x] \), \(R[x]/(x) \to R \), \(f(x) \to f(0) \).
Ideals Generated by Sets

Definition: If $A \subseteq R$, then the ideal generated by A is

$$(A) = \bigcap_{A \subseteq \mathbb{R}} I = \left\{ \sum_{i=1}^{k} r_i a_i s_i \mid r_i \in \mathbb{Z}^+, a_i \in A, r_i s_i \in R \right\}$$

This is the smallest ideal containing A. If R is commutative, then

$$(A) = \bigcap_{A \subseteq \mathbb{R}} I = \left\{ \sum_{i=1}^{k} r_i a_i \mid a_i \in A, r_i \in R \right\}$$