while if n = 4 they are

Thus $Q_1 = 1$, $Q_2 = 1$, $Q_3 = 3$, and $Q_4 = 11$.

Theorem 6.5.1 For $n \ge 1$

$$Q_n = n! - \binom{n-1}{1}(n-1)! + \binom{n-1}{2}(n-2)!$$
$$-\binom{n-1}{3}(n-3)! + \dots + (-1)^{n-1}\binom{n-1}{n-1}1!.$$

Proof. Let S be the set of all n! permutations of $\{1, 2, ..., n\}$. Let P_j be the property that in a permutation the pattern j(j+1) does occur, (j=1,2,...,n-1). Thus a permutation of $\{1,2,...,n\}$ is counted in the number Q_n if and only if it has none of the properties $P_1, P_2, ..., P_{n-1}$. As usual let A_j denote the set of permutations of $\{1,2,...,n\}$ which satisfy property P_j , (j=1,2,...,n-1). Then

$$Q_n = |\overline{A}_1 \cap \overline{\overline{A}}_2 \cap \cdots \cap \overline{A}_{n-1}|,$$

and we apply the inclusion-exclusion principle to evaluate Q_n . We first calculate the number of permutations in A_1 . A permutation is in A_1 if and only if the pattern 12 occurs in it. Thus a permutation in A_1 may be regarded as a permutation of the n-1 symbols $\{12, 3, 4, \ldots, n\}$. We conclude that $|A_1| = (n-1)!$, and in general we see that

$$|A_j| = (n-1)!$$
 $(j = 1, 2, \dots, n-1),$

Permutations which are in two of the sets $A_1, A_2, \ldots, A_{n-1}$ contain two patterns. These patterns either share an element, like the patterns 12 and 23 or have no element in common, like the patterns 12 and 34. A permutation which contains the two patterns 12 and 34 can be regarded as a permutation of the n-2 symbols $\{12, 34, 5, \ldots, n\}$. Thus $|A_1 \cap A_3| = (n-2)!$. A permutation which contains the two patterns 12 and 23 contains the pattern

123 and thus can be regarded as a permutation of the n-2 symbols $\{123,4,\ldots,n\}$. Thus $|A_1\cap A_2|=(n-2)!$. In general, we see that

$$|A_i \cap A_j| = (n-2)!$$

for each 2-combination $\{i,j\}$ of $\{1,2,\ldots,n-1\}$. More generally, we see that a permutation which contains k specified patterns from the list $12,23,\ldots,(n-1)n$ can be regarded as a permutation of n-k symbols, and thus that

$$|A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}| = (n-k)!$$

for each k-combination $\{i_1,i_2,\ldots,i_k\}$ of $\{1,2,\ldots,n-1\}$. Since for each $k=1,2,\ldots,n-1$ there are $\binom{n-1}{k}$ k-combinations of $\{1,2,\ldots,n-1\}$, applying the inclusion-exclusion principle we obtain the formula in the theorem.

Using the formula of Theorem 6.5.1, we calculate that

$$Q_5 = 5! - {4 \choose 1} 4! + {4 \choose 2} 3! - {4 \choose 3} 2! + {4 \choose 4} 1! = 53.$$

The numbers Q_1, Q_2, Q_3, \ldots are closely related to the derangement numbers. Indeed we have $Q_n = D_n + D_{n-1}$, $(n \ge 2)$ (see Exercise 23). Thus knowing the derangement numbers, we can calculate the numbers Q_1, Q_2, Q_3, \ldots . Since we have already seen in the preceding section that $D_5 = 44$, $D_6 = 265$, we conclude that $Q_6 = D_6 + D_5 = 265 + 44 = 309$.

6.6 Exercises

- 1. Find the number of integers between 1 and 10,000 inclusive which are not divisible by 4, 5, or 6.
- 2. Find the number of integers between 1 and 10,000 inclusive which are not divisible by 4, 6, 7, or 10.
- 3. Find the number of integers between 1 and 10,000 which are neither perfect squares nor perfect cubes.
- 4. Determine the number of 12-combinations of the multiset

$$S = \{4 \cdot a, 3 \cdot b, 4 \cdot c, 5 \cdot d\}.$$

5. Determine the number of 10-combinations of the multiset

$$S = \{ \infty \cdot a, 4 \cdot b, 5 \cdot c, 7 \cdot d \}.$$

- 6. A bakery sells chocolate, cinnamon, and plain doughnuts and at a particular time has 6 chocolate, 6 cinnamon, and 3 plain. If a box contains 12 doughnuts, how many different boxes of doughnuts are possible?
- 7. Determine the number of solutions of the equation $x_1 + x_2 + x_3 + x_4 = 14$ in non-negative integers x_1, x_2, x_3 , and x_4 not exceeding 8.
- 8. Determine the number of solutions of the equation $x_1 + x_2 + x_3 + x_4 = 14$ in positive integers x_1, x_2, x_3 , and x_4 not exceeding 8.
- 9. Determine the number of integral solutions of the equation

$$x_1 + x_2 + x_3 + x_4 = 20$$

which satisfy

$$1 < x_1 < 6, \ 0 \le x_2 \le 7, \ 4 \le x_3 \le 8, \ 2 \le x_4 \le 6.$$

- 10. Let S be a multiset with k distinct objects whose repetition numbers are n_1, n_2, \ldots, n_k , respectively. Let r be a positive integer such that there is at least one r-combination of S. Show that in applying the inclusion-exclusion principle to determine the number of r-combinations of S, one has $A_1 \cap A_2 \cap \cdots \cap A_k = \emptyset$.
- 11. Determine the number of permutations of $\{1, 2, ..., 8\}$ in which no even integer is in its natural position.
- 12. Determine the number of permutations of $\{1, 2, \dots, 8\}$ in which exactly four integers are in their natural position.
- 13. Determine the number of permutations of $\{1, 2, \dots, 9\}$ in which at least one odd integer is in its natural position.
- 14. Determine a general formula for the number of permutations of the set $\{1, 2, ..., n\}$ in which exactly k integers are in their natural positions.

- 15. At a party 7 gentlemen check their hats. In how many ways can their hats be returned so that
 - (a) no gentleman receives his own hat?
 - (b) at least one of the gentlemen receives his own hat?
 - (c) at least two of the gentlemen receive their own hats?
- 16. Use combinatorial reasoning to derive the identity

$$n! = \binom{n}{0}D_n + \binom{n}{1}D_{n-1} + \binom{n}{2}D_{n-2} + \dots + \binom{n}{n-1}D_1 + \binom{n}{n}D_0.$$

(Here D_0 is defined to be 1.)

17. Determine the number of permutations of the multiset

$$S = \{3 \cdot a, 4 \cdot b, 2 \cdot c\}$$

where, for each type of letter, the letters of the same type do not appear consecutively. (Thus *abbbbcaca* is not allowed, but *abbbacacb* is.)

18. Verify the factorial formula

$$n! = (n-1)((n-2)! + (n-1)!), \qquad (n = 2, 3, 4, ...).$$

19. Using the evaluation of the derangement numbers as given in Theorem 6.3.1, provide a proof of the relation

$$D_n = (n-1)(D_{n-2} + D_{n-1}), \qquad (n = 3, 4, 5, \ldots).$$

- 20. Starting from the formula $D_n = nD_{n-1} + (-1)^n$, (n = 2, 3, 4, ...), give a proof of Theorem 6.3.1.
- 21. Prove that D_n is an even number if and only if n is an odd number.
- 22. Show that the numbers Q_n of section 6.5 can be rewritten in the form

$$Q_n = (n-1)! \left(n - \frac{n-1}{1!} + \frac{n-2}{2!} - \frac{n-3}{3!} + \dots + \frac{(-1)^{n-1}}{(n-1)!} \right).$$

- 23. (Continuation of Exercise 22.) Verify the identity

$$(-1)^k \frac{n-k}{k!} = (-1)^k \frac{n}{k!} + (-1)^{k-1} \frac{1}{(k-1)!},$$

and use it to prove that $Q_n = D_n + D_{n-1}$, (n = 2, 3, ...).

24. What is the number of ways to place six non-attacking rooks on the 6-by-6 boards with forbidden positions as shown?

	×	×				
			×	×		
(a)					×	×
` /						ı,
						1

	×	×				
	X	×				
(b)			×	×		
			×	×		
					×	×
					×	×

/\	_ ^				
	×	×			38
		×			
				×	×
					×
		X	× ×	X X X	X X X X X

- 25. Count the permutations $i_1i_2i_3i_4i_5i_6$ of $\{1,2,3,4,5,6\}$ where $i_1 \neq 1, 5; i_3 \neq 2, 3, 5; i_4 \neq 4 \text{ and } i_6 \neq 5, 6.$
- 26. Count the permutations $i_1i_2i_3i_4i_5i_6$ of $\{1,2,3,4,5,6\}$ where $i_1 \neq 1, 2, 3; i_2 \neq 1; i_3 \neq 1; i_5 \neq 5, 6 \text{ and } i_6 \neq 5, 6.$
- 27. Eight girls are seated around a carousel. In how many ways can they change seats so that each has a different girl in front of her?
- 28. Eight boys are seated around a carousel but facing inward, so that each boy faces another. In how many ways can they change seats so that each faces a different boy?

29. How many circular permutations are there of the multiset

Sec. 6.6: Exercises

$$\{3\cdot a, 4\cdot b, 2\cdot c, 1\cdot d\}$$

where for each type of letter, all letters of that type do not appear consecutively?

30. How many circular permutations are there of the multiset

$$\{2 \cdot a, 3 \cdot b, 4 \cdot c, 5 \cdot d\}$$

where for each type of letter, all letters of that type do not appear consecutively?