On the first homework assignment most of the class struggled with #18. Many did not attempt it. We can expect lots of proof-type problems like this one, so we’ll devote some class time to its solution.

In this problem \(A \) is an arbitrary set, \(B = \{0,1,3\} \) and \(B^A \) is the set of all functions \(f: A \to B \). We are asked to show \(|B^A| = |P(A)| \). To accomplish this we must find a one-to-one and onto function \(\Phi: B^A \to P(A) \).

To get an idea of how to proceed, look at the example where \(A = \{a, b\} \). Let’s list out \(B^A \) and \(P(A) \).

\[
B^A = \{ \emptyset, \{a\}, \{b\}, \{a, b\} \}, \quad P(A) = \{ \emptyset, \{a\}, \{b\}, \{a, b\} \}
\]

Notice that indeed \(|B^A| = 4 = |P(A)| \). But also the example suggests an actual function \(\Phi: B^A \to P(A) \) sending any function \(f \in B^A \) to the set \(\{ x \in A \mid f(x) = 1 \} \) in \(P(A) \), (just below \(f \)).

Now that we’ve got an idea, let’s put it all together.

So #18 Suppose \(A \) is any set (finite or infinite) and \(B^A \) is the set of all functions \(f: A \to B \). Prove that \(|B^A| = |P(A)| \).

Proof We need to produce a one-to-one and onto function \(\Phi: B^A \to P(A) \). To do this, let \(\Phi: B^A \to P(A) \) be the function defined as \(\Phi(f) = \{ x \in A \mid f(x) = 1 \} \).

First note that \(\Phi \) is one-to-one: Suppose \(f, g \in B^A \) and \(f \neq g \).

We want to show \(\Phi(f) \neq \Phi(g) \). Now, \(f \neq g \) means that there is an element \(a \in A \) for which \(f(a) \neq g(a) \). Then either \(f(a) = 0 \) and \(g(a) = 1 \), or \(f(a) = 1 \) and \(g(a) = 0 \). Let’s say \(f(a) = 0 \) and \(g(a) = 1 \). (The other case is nearly identical.) Now since \(f(a) = 0 \), we know \(a \notin \{ x \in A \mid f(x) = 1 \} = \Phi(f) \).

And because \(g(a) = 1 \), we know \(a \in \{ x \in A \mid g(x) = 1 \} = \Phi(g) \). Therefore \(a \notin \Phi(f) \) but \(a \in \Phi(g) \), so \(\Phi(f) \neq \Phi(g) \).

Next note that \(\Phi \) is onto: Take an arbitrary set \(X \in P(A) \), which is to say \(X \) is an arbitrary subset \(X \subseteq A \). Now construct a function \(f: A \to B \) defined as \(f(x) = \begin{cases} 0 & \text{if } x \notin X \\ 1 & \text{if } x \in X \end{cases} \).

Then \(f \in B^A \) and note that \(f \) has been constructed so that \(\Phi(f) = \{ x \in A \mid f(x) = 1 \} = X \). Therefore \(\Phi \) is onto.