On homework and tests in this class you will be asked to prove things about groups. Let's do an example.

§ 4 29 Suppose G is a finite group. Prove the following:

If $|G|$ is even, then there is an element $a \in G$ with $a \neq e$ and $a \ast a = e$.

Let's first look at some examples to get a feel for the question.

Example

$\mathbb{Z}_3 = \{0, 1, 2\} \quad (e = 0)$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$\mathbb{Z}_4 = \{0, 1, 2, 3\}$

$\mathbb{V} = \{e, a, b, c\}$

Let $a = 2$

then $a \ast a = 2 \ast 2 = 0 = e$

$1 \ast 1 = 2 \neq e$

$2 \ast 2 = 1 \neq e$

(But $|\mathbb{Z}_3| = 3$ is odd)

In the examples above where $|G|$ is even we were always able to find an $a \in G$, $a \neq e$ with $a \ast a = e$.

Proposition Suppose G is a finite group.

If $|G|$ is even then there is an $a \in G$, $a \neq e$ for which $a \ast a = e$.

Proof

Suppose it's not true that there is an $a \in G$, $a \neq e$ with $a \ast a = e$. Then $a \ast a \neq e$ for every $a \in G$.

So $a' \ast (a \ast a) \neq a' \ast e$ for every $a \in G$.

i.e. $(a' \ast a) \ast a \neq a'$ for every $a \in G$.

i.e. $e \ast a \neq a'$ for every $a \in G$.

i.e. $a \neq a'$ for every $a \in G$.

Now list the elements of G as $e, a_1, a_2, a_3, \ldots, a_n$.

Then $|G| = 1 + 2n$ is odd, so $|G|$ is not even.
Section 5 Subgroups

Before getting to today's main topic, it's a good time to introduce some notation and conventions.

In algebra, the * operator is rarely used. Instead we write \(a \ast b \) as either \(ab \) or \(a + b \) depending on whether we are thinking more of addition or multiplication.

Convention + is used only for abelian groups.

Notation: \(a + a + a + a = 4a \), etc. \(a' = -a \), \(-5a = 5(-a) \), \(aaaa = a^4 \), etc. \(a' = a^{-1} \) \(a^{-5} = (a^{-1})^5 \)

Thus the usual calculations apply:

1. \(3a - 5a = a + a + a - a - a - a - a = -a - a = -2a \)
2. \(a^3 a^{-5} = aaaa a^{-1} a^{-1} a^{-1} a^{-1} = a^{-1} a^{-1} a^{-1} = a^{-2} \)

With this in mind, let's get started.

Sub groups

Sometimes a group sits inside a larger group, and both groups use the same operation. When this happens we say the smaller group is a subgroup of the larger one.

Examples

\(<\mathbb{Z},+>\) subgroup of \(<\mathbb{R},+>\)

\(<\mathbb{R},+>\) subgroup of \(<\mathbb{C},+>\)

\(<2\mathbb{Z},+>\) subgroup of \(<\mathbb{Z},+>\)

\(<\mathbb{U},>\) subgroup of \(<\mathbb{C}^*,>\)

Definition A subset \(H \subseteq G \) is a subgroup of \(G \) if \(H \) is a group under the operation of \(G \). We write this as \(H \leq G \).
Theorem: \(H \leq G \) is a subgroup of \(G \) if and only if

1. \(H \) is closed under the binary operation of \(G \)
2. Identity element of \(G \) is in \(H \)
3. If \(a \in H \) then \(a^{-1} \in H \)

Example: Find all subgroups of \(\mathbb{Z}_{12} \)

Example: Subgroups of \(U_4 = \{1, i, -1, -i\} \)

Example: Find some subgroups of \(< \mathbb{Z}, + > \)

\(H = \{\ldots, -6, -4, -2, 0, 2, 4, 6, 8, \ldots \} = \{2n \mid n \in \mathbb{Z}\} = 2\mathbb{Z} \)

\(K = \{\ldots, -3, -1, 0, 3, 6, 9, 12, \ldots \} = \{3n \mid n \in \mathbb{Z}\} = 3\mathbb{Z} \)

\(L = \{\ldots, -12, -6, -3, 0, 3, 6, 9, 12, 15, \ldots \} = \{4n \mid n \in \mathbb{Z}\} = 4\mathbb{Z} \)

Example: Subgroup of \(< \mathbb{R}^*, \cdot > \)

\(H = \{\ldots, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, 16, \ldots \} = \{2^n \mid n \in \mathbb{Z}\} \)

\(K = \{\ldots, \frac{1}{8}, \frac{1}{2}, 1, 3, 9, 27, 81, \ldots \} = \{3^n \mid n \in \mathbb{Z}\} \)