1. Draw the subgroup lattice for \mathbb{Z}_{18}.

\[\begin{array}{c}
\mathbb{Z}_{18} \\
\langle 2 \rangle \quad \langle 3 \rangle \\
\langle 6 \rangle \quad \langle 9 \rangle \\
\langle 0 \rangle
\end{array} \]

2. List the elements of the cyclic subgroup $\langle -i \rangle$ of \mathbb{C}^*. Answer: 1, $-i$, -1, i

3. Find the order of the largest cyclic subgroup of the symmetric group S_{10}.
 Consider the element $(1,2,3,4,5)(6,7,8)(9,10)$.
 It has order $(5)(3)(2) = 30$, so the subgroup generated by it has 30 elements.
 Can you do better than this? Any permutation in S_{10} can be written as a product of disjoint cycles, and its order is at most the sum of the lengths of the cycles. A quick exhaustive search confirms that the above element has the greatest possible order.
4. Consider the set \(H = \{ \sigma \in S_5 \mid \sigma(3) = 3 \} \).

(a) \(|H| = 4! = 24\)

(b) Explain why \(H \) is a subgroup of \(S_5 \).

Note that
1. \(H \) is closed. If \(\pi, \mu \in H \), then \(\pi(3) = 3 \) and \(\mu(3) = 3 \). Thus \(\pi \mu(3) = \pi(\mu(3)) = \pi(3) = 3 \), so \(\pi \mu \in H \).
2. The identity permutation \(i \) is in \(H \) because \(i(3) = 3 \).
3. If \(\mu \in H \), then \(3 = \mu(3) \), so \(\mu^{-1}(3) = \mu^{-1}(\mu(3)) = 3 \), which means \(\mu^{-1} \) is in \(H \).
It follows that \(H \) is a subgroup.

(c) Is \(H \) a normal subgroup of \(S_5 \)? Explain.

NO.
For example, look at the cycle \((1,2,4)\), which is in \(H \) because it leaves 3 unchanged.
Consider the permutation \((1,3)\) which is its own inverse.
Notice that \((1,3)(1,2,4)(1,3)\) is NOT in \(H \) because it sends 3 to 2.
This shows that it's not true that \(g^{-1}hg \) is \(H \) for every element \(h \) in \(H \), so \(H \) is not normal.

(d) How many left cosets of \(H \) are there in \(S_5 \)?

There are \(|S_5|/|H| = 120/24 = 5\) such cosets.

5. List all the nonisomorphic groups of order 180.

\(180 = 2^23^25 \)

\(\mathbb{Z}_4 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \)
\(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_9 \times \mathbb{Z}_5 \)
\(\mathbb{Z}_4 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \)
\(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_5 \)

6. Find the order of \((3,6,9)\) in \(\mathbb{Z}_4 \times \mathbb{Z}_{12} \times \mathbb{Z}_{15} \).

Look at \(n(3, 6, 9) = (n3, n6, n9) \), where \(n \) is an integer.
\(n \) must be a multiple of 4 to make \(n3 = 0 \)
\(n \) must be a multiple of 2 to make \(n6 = 0 \)
\(n \) must be a multiple of 5 to make \(n9 = 0 \)

The least common multiple is 20, so that is the order of \((3, 6, 9)\).
7. Are the groups $\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_3$ and $\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_{15}$ isomorphic? Why or why not?

$\mathbb{Z}_8 \times \mathbb{Z}_{10} \times \mathbb{Z}_3 = \mathbb{Z}_8 \times \mathbb{Z}_{30}$ (since 3 and 10 are relatively prime)
$\mathbb{Z}_8 \times \mathbb{Z}_2 \times \mathbb{Z}_{15} = \mathbb{Z}_8 \times \mathbb{Z}_{30}$ (since 2 and 15 are relatively prime)

Therefore the two groups are isomorphic.

8. Find the kernel of the homomorphism $\phi : \mathbb{Z} \rightarrow \mathbb{Z}_8$ for which $\phi(1)=6$.

Note $\phi(n) = \phi(1 + 1 + ... + 1) = \phi(1) + \phi(1) + ... + \phi(1) = 6 + 6 + ... + 6 = 6n \pmod{8}$

Thus the kernel will be all integers n for which $6n = (3)(2)n$ is a multiple of 8.

Such an n must be a multiple of 4.

Thus kernel is $4\mathbb{Z}$.

9. Find the kernel of the homomorphism $\phi : \mathbb{Z}_{40} \rightarrow \mathbb{Z}_5 \times \mathbb{Z}_8$ for which $\phi(1) = (1,4)$.

Note $\phi(n) = \phi(1 + 1 + ... + 1) = \phi(1) + \phi(1) + ... + \phi(1) = n(1, 4) = (n, 4n)$

For this equal $(0,0)$, n must be a multiple of 5 and $4n$ must be a multiple of 8.

It follows that the kernel is $\{0, 10, 20, 30\}$

10. (a) List the units in the ring \mathbb{Z}_{12}.

$1, 5, 7, 11$

(b) List the zero divisors in the ring \mathbb{Z}_{12}.

$2, 3, 4, 6, 8, 9, 10$

(c) List the prime ideals in the ring \mathbb{Z}_{12}.

Recall that an ideal N is prime if and only if \mathbb{Z}_{12}/N is an integral domain.

The ideals in this ring are $\langle 0 \rangle, \langle 1 \rangle = \langle 5 \rangle = \langle 7 \rangle = \langle 11 \rangle, \langle 2 \rangle = \langle 10 \rangle, \langle 3 \rangle = \langle 9 \rangle, \langle 6 \rangle, \langle 4 \rangle = \langle 8 \rangle$.

$\mathbb{Z}_{12}/\langle 0 \rangle \cong \mathbb{Z}_{12}$ is not an integral domain so $\langle 0 \rangle$ is not prime.

$\mathbb{Z}_{12}/\langle 1 \rangle \cong \{0\}$ is not an integral domain so $\langle 1 \rangle$ is not prime.

$\mathbb{Z}_{12}/\langle 2 \rangle \cong \mathbb{Z}_2$ is an integral domain so $\langle 2 \rangle$ is prime.

$\mathbb{Z}_{12}/\langle 3 \rangle \cong \mathbb{Z}_4$ is not an integral domain so $\langle 3 \rangle$ is not prime.

$\mathbb{Z}_{12}/\langle 4 \rangle \cong \mathbb{Z}_4$ is an integral domain so $\langle 4 \rangle$ is prime.

$\mathbb{Z}_{12}/\langle 6 \rangle \cong \mathbb{Z}_6$ is not an integral domain so $\langle 6 \rangle$ is not prime.

Prime ideals are $\langle 2 \rangle$ and $\langle 4 \rangle$.
11. What familiar group is \((\mathbb{Z}_4 \times \mathbb{Z}_6) / \langle (2,3) \rangle \) isomorphic to?

Note \(H = \langle (2,3) \rangle = \{(0,0), (2,3)\} \) has just 2 elements.
It follows that the factor group has \((4)(6)/2 = 12\) elements.
We claim that the factor group is generated by the element \((1, 1)+ H\).
\[
\begin{align*}
0((1, 1)+ H) &= (0, 0)+ H \\
1((1, 1)+ H) &= (1, 1)+ H \\
2((1, 1)+ H) &= (2, 2)+ H \\
3((1, 1)+ H) &= (3, 3)+ H \\
4((1, 1)+ H) &= (0, 4)+ H \\
5((1, 1)+ H) &= (1, 5)+ H \\
6((1, 1)+ H) &= (2, 0)+ H \\
7((1, 1)+ H) &= (3, 1)+ H \\
8((1, 1)+ H) &= (0, 2)+ H \\
9((1, 1)+ H) &= (1, 3)+ H \\
10((1, 1)+ H) &= (2, 4)+ H \\
11((1, 1)+ H) &= (3, 5)+ H \\
12((1, 1)+ H) &= (0, 0)+ H
\end{align*}
\]
Thus \((1, 1)+ H\) generates the entire group. Group is cyclic with 12 elements. It’s \(\mathbb{Z}_{12}\).

12. Explain why \(\mathbb{C}^*/U \cong \mathbb{R}^+\).

Consider the function \(\phi : \mathbb{C}^* \to \mathbb{R}^+, \) given by \(\phi(z) = |z|\).
This is a homomorphism because \(\phi(zw) = |zw| = |z||w| = \phi(z)\phi(w)\).
It’s surjective because given any \(x\) in \(\mathbb{R}^+, \phi(x) = x\).
Also, its Kernel is \(\{z \in \mathbb{C}^* : \phi(z) = 1\} = \{z \in \mathbb{C}^* : |z| = 1\} = U\).
By the Fundamental Theorem of Homomorphisms, there is an isomorphism \(\mu : \mathbb{C}^*/U \to \mathbb{R}^+\).

13. Is \(2x^3 + x^2 + 2x + 2\) an irreducible polynomial in \(\mathbb{Z}_5[x]\)? If not, write it as a product of irreducible polynomials.

Let \(f(x) = 2x^3 + x^2 + 2x + 2\).
If this factored, then it would factor into a linear and a quadratic term, or 3 linear terms.
Either way, there would be a linear term, so the polynomial would have a root.
But a quick check shows there are no roots:
\[
\begin{align*}
f(0) &= 2 \\
f(1) &= 2 \\
f(2) &= 1 \\
f(3) &= 1 \\
f(4) &= 4
\end{align*}
\]
Conclusion. It can’t be factored. It’s irreducible.
14. Find all \(c \in \mathbb{Z}_3 \) for which \(\mathbb{Z}_3[x]/\langle x^2 + c \rangle \) is a field.

These would be all the elements \(c \) for which the ideal \(\langle x^2 + c \rangle \) is maximal, which in turn is all elements \(c \) for which \(x^2 + c \) is irreducible.
If \(c = 0 \), the polynomial is \(x^2 = (x)(x) \) which is not irreducible.
If \(c = 1 \), the polynomial is \(x^2 + 1 \), and its of degree 2 with no roots, so its irreducible.
If \(c = 2 \), the polynomial is \(x^2 + 2 \), and its of degree 2 with no roots, so its irreducible.

ANSWER: \(c = 1 \) and \(c = 2 \).

15. Prove that if \(G \) is a finite group with identity \(e \), and \(m = |G| \), then \(x^m = e \) for any element \(x \in G \).

Proof. Take any \(x \) in \(G \) and consider the cyclic subgroup \(\langle x \rangle \).
Let’s say \(k = |\langle x \rangle| \), which means \(\langle x \rangle = \{e, x, x^2, x^3, \ldots, x^{k-1}\} \), so \(x^k = e \).
Lagrange’s Theorem says \(k \) divides \(m \), so \(m = kn \) for some integer \(n \).
Now, \(x^m = x^{kn} = (x^k)^n = e^n = e \).

16. Suppose that \(G \) is a group with identity \(e \). Prove that if \(x^2 = e \) for every element \(x \) in \(G \), then \(G \) is abelian.

Proof.
Suppose \(a \) and \(b \) are arbitrary elements of \(G \).
We want to show \(ab = ba \).
By hypothesis, \((ab)^2 = abab = e \).
Multiply both sides of \(abab = e \) on the left by \(a \) and you get \(aabab = a \).
But, since \(aa = e \), this becomes \(bab = a \).
Now multiply both sides of \(bab = a \) on the right by \(b \) to get \(babb = ab \).
But since \(bb = e \) this becomes \(baa = ab \).
Therefore \(G \) is abelian.
17. Prove that if \(G \) is an abelian group, then the set of all elements \(x \in G \) for which \(x^2 = e \) form a subgroup of \(G \).

Proof. Let \(H = \{ x \in G | x^2 = e \} \). We must show this is a subgroup of \(G \).

Notice that:
1. \(H \) is closed. If \(a, b \in H \), then \(a^2 = e \) and \(b^2 = e \), so \((ab)^2 = abab = aabb = a^2b^2 = ee = e \), so \(ab \) is in \(H \).
2. The identity \(e \) is in \(H \) because \(e^2 = e \).
3. If \(a \) is in \(H \), then \(a^2 = e \) so \((a^2)^{-1} = e^{-1} \), which is \(a^{-2} = e \), or \((a^{-1})^2 = e \). This means \(a^{-1} \) is in \(H \).

18. Prove that the units of a ring with unity form a multiplicative group.

Proof. Suppose \(R \) is a ring with unity and \(M \subset R \) is the set of all its units.

Notice that \(M \) is closed under multiplication, for if \(a \) and \(b \) are in \(M \) then \(ab \) is a unit with inverse \(b^{-1}a^{-1} \).

Thus ring multiplication gives a binary operation on \(M \).

We now just need to show the 3 group axioms hold for multiplication in \(M \).
1. Multiplication is associative because it’s associative in the ring \(R \).
2. Unity \(1 \) is in \(M \) because it’s a unit, and this serves as the identity.
3. If \(a \) is in \(M \), then \(a \) is a unit and so is its inverse because \(aa^{-1} = 1 \), so \(a^{-1} \) is in \(M \).
We’re done.