
“Shutting up like a telescope”:
Lewis Carroll’s “Curious” Condensation
Method for Evaluating Determinants
Adrian Rice and Eve Torrence

Adrian Rice (arice4@rmc.edu) received a B.Sc. in
mathematics from University College London in 1992 and a
Ph.D. in the history of mathematics from Middlesex
University in 1997 for a dissertation on Augustus De
Morgan. He is currently an associate professor of
mathematics at Randolph-Macon College in Ashland,
Virginia, where his research focuses on 19th- and early
20th-century British mathematics. His recent publications
include Mathematics Unbound: The Evolution of an
International Mathematical Research Community,
1800–1945, edited with Karen Hunger Parshall, and The
London Mathematical Society Book of Presidents,
1865–1965, written with Susan Oakes and Alan Pears.

Eve Torrence (etorrenc@rmc.edu) received her Ph.D. in
1991 from the University of Virginia. She was a Clare
Boothe Luce professor at Trinity College in Washington,
D.C. from 1991 to 1994 and is currently an associate
professor at Randolph-Macon College. She is the chair of
the Maryland-District of Columbia-Virginia Section of the
MAA and a member of the Pi Mu Epsilon Council. She and
her husband Bruce are the co-authors of The Student’s
Introduction to Mathematica, A Handbook for Precalculus,
Calculus, and Linear Algebra. Her areas of interest include
geometry, origami, and mathematics education. She also
enjoys gardening, horse riding, and playing with her
children and her Australian shepherd puppy.

As every algebra student knows, given a 2 × 2 matrix,

A =
(

a b
c d

)
,

its determinant det A (or |A|) is calculated by finding the difference between the prod-
ucts of the diametrically opposed entries in the matrix. That is, det A = ad − bc. Given
any n × n matrix A, its determinant will provide useful information, both algebraic
and geometric. For example, geometrically, the row entries of A define the edges of
a parallelepiped in n-dimensional space, of which the volume is simply the value of
det A. Algebraically, the matrix A represents the coefficients of a system of n linear
equations in n unknowns. The value of the determinant of A determines whether or
not this system is solvable. In particular, if det A is nonzero, we know that the inverse
matrix exists, and this in turn implies the solvability of the system of linear equations
represented by matrix A.
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Determinants emerged gradually during the 18th century through the theory of
equations in the work of Leibniz, Maclaurin, Cramer, and Laplace. By the 19th cen-
tury, the subject had become a mathematical area of increasing significance. Gauss
(who invented the name determinant [16, vol. 1, p. 64]), Cauchy, and Cayley all pro-
duced important results on the subject, and in 1841, the German mathematician Carl
Jacobi [12], [13], [14] published three major papers which finally brought the subject
into the mathematical mainstream.

As we have seen, 2 × 2 determinants can be calculated very easily, but as n in-
creases, computations become more time-consuming. The standard method of com-
puting a determinant is to break it down into more determinants of lower degree by
taking the product of each row or column entry and the determinant of its complemen-
tary minor and then alternately adding and subtracting the results. This method was
devised by Laplace [15] in 1772 and is nowadays based on the following definitions
and a theorem, which still bears his name.

Given an n × n matrix A, a minor is any (n − m) × (n − m) matrix formed by
deleting m rows and m columns from A. A complementary minor is the resulting
m × m matrix diagonally adjacent to the minor matrix. A consecutive minor is one
in which the remaining rows and columns in the minor were adjacent in the original
matrix. Finally, a′

i j = (−1)i+ j det[Ai j ] is the cofactor of ai j in A, where [Ai j ] denotes
the minor matrix obtained by deleting the i th row and j th column in A.

For example, consider the matrix

A =
⎛
⎜⎝

2 1 −1 −3
1 −2 3 0
3 1 2 −1
0 −2 3 1

⎞
⎟⎠ .

If we let m = 2 and delete the second and third rows and columns, we obtain the minor

matrix
⎛
⎝ 2 −3

0 1

⎞
⎠ and the complementary minor

(−2 3
1 2

)
, which is also consecutive.

Theorem 1. If A = [ai j ] is an n × n matrix, the determinant of A,

det A = ar1a′
r1 + ar2a′

r2 + · · · + arna′
rn (for 1 ≤ r ≤ n)

= a1sa
′
1s + a2sa

′
2s + · · · + ansa

′
ns (for 1 ≤ s ≤ n).

Continuing with our example from above, using the cofactors of the first row of
matrix A, we get

det A = a11a′
11 + a12a′

12 + a13a′
13 + a14a′

14

= 2

∣∣∣∣∣∣
−2 3 0
1 2 −1

−2 3 1

∣∣∣∣∣∣ − 1

∣∣∣∣∣∣
1 3 0
3 2 −1
0 3 1

∣∣∣∣∣∣ − 1

∣∣∣∣∣∣
1 −2 0
3 1 −1
0 −2 1

∣∣∣∣∣∣ + 3

∣∣∣∣∣∣
1 −2 3
3 1 2
0 −2 3

∣∣∣∣∣∣
= 2(−7) − 1(−4) − 1(5) + 3(7)

= 6.

This method quickly gets long and laborious as the size of the matrix increases. In
fact, to find the determinant of a 5 × 5 matrix a considerable amount of calculation
is required, involving five 4 × 4 determinants, which break down into twenty 3 × 3
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determinants, or sixty 2 × 2 determinants, or 120 actual multiplications, plus all the
additions required, before you get to the final answer. Another popular method is to
use elementary row operations to produce a triangular matrix, whose determinant is
simply the product of the diagonal entries. However, this method can also involve a
considerable amount of work.

Of course these days, with the help of packages like Mathematica, Maple, or Mat-
lab, determinants can be easily calculated in a matter of seconds. But before the 20th
century, mathematicians had no such luxury, nor indeed does everyone today. But there
is another method, first introduced in 1866 and widely ignored since, which can sim-
plify the work involved in calculating determinants of large matrices considerably, and
which, we believe, can still be of interest to today’s students.

The condensation method
The algorithm is one of considerable computational simplicity, achieved by restricting
itself entirely to the calculation of 2 × 2 determinants. We first need another definition:

Given an n × n matrix A, with n ≥ 3, the interior of A, or intA, is the (n − 2) ×
(n − 2) consecutive minor that results when the first and last rows and columns of
matrix A are deleted.

The method consists of the following steps:

• Remove all zeros from the interior of A, using elementary row and column opera-
tions. Call this matrix A(0).

• Find the determinant of every 2 × 2 consecutive minor in A(0) to form a new
(n − 1) × (n − 1) matrix A(1).

• Now find the determinant of every 2 × 2 consecutive minor in A(1) to produce an
(n − 2) × (n − 2) matrix. Then divide each term by the corresponding entry in the
interior of matrix A(0). This will give a new matrix A(2).

• In general, given the matrix A(k), compute a new (n − k − 1) × (n − k − 1) matrix
made up of the determinants of the 2 × 2 consecutive minors of A(k). To produce
A(k+1), divide each of these entries by the corresponding entry in the interior of
A(k−1).

• Continue repeating the previous step, ‘condensing’ the matrix until a single number
is obtained. This will be det A.

As an illustration of this method, we continue with our example. Consider again the
4 × 4 matrix

A =
⎛
⎜⎝

2 1 −1 −3
1 −2 3 0
3 1 2 −1
0 −2 3 1

⎞
⎟⎠ = A(0).

Finding all determinants of 2 × 2 consecutive minors, we ‘condense’ the matrix into
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the 3 × 3 matrix

A(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣ 2 1
1 −2

∣∣∣∣
∣∣∣∣ 1 −1
−2 3

∣∣∣∣
∣∣∣∣−1 −3

3 0

∣∣∣∣∣∣∣∣ 1 −2
3 1

∣∣∣∣
∣∣∣∣ −2 3

1 2

∣∣∣∣
∣∣∣∣ 3 0
2 −1

∣∣∣∣∣∣∣∣ 3 1
0 −2

∣∣∣∣
∣∣∣∣ 1 2
−2 3

∣∣∣∣
∣∣∣∣ 2 −1
3 1

∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎝−5 1 9

7 −7 −3
−6 7 5

⎞
⎠ .

This matrix is, in turn, similarly condensed into the matrix
⎛
⎜⎜⎜⎝

∣∣∣∣−5 1
7 −7

∣∣∣∣
∣∣∣∣ 1 9
−7 −3

∣∣∣∣∣∣∣∣ 7 −7
−6 7

∣∣∣∣
∣∣∣∣ −7 −3

7 5

∣∣∣∣

⎞
⎟⎟⎟⎠ =

(
28 60
7 −14

)
.

We now divide each entry of this matrix by the corresponding term in the interior of
matrix A(0) to obtain

A(2) =
(−14 20

7 −7

)
.

The determinant of matrix A(2) is −42, which, when divided by −7, the interior term
of matrix A(1), gives ‘matrix’ A(3) containing as its only entry the correct answer of 6.

But why does this method work, and where did it come from?

Enter Lewis Carroll
The inventor of this ingenious method was none other than the Reverend Charles
Lutwidge Dodgson (1832–1898), a Church of England clergyman who earned his liv-
ing as a mathematics lecturer at Christ Church, Oxford. But it was through his hobby
of writing children’s books, puzzles, and verses under the pseudonym “Lewis Carroll”
that he became best known, particularly after the publication of his most successful
work, Alice in Wonderland, in 1865. In addition to this, he also wrote and published a
considerable number of books on mathematical subjects under his real name, including
A Syllabus of Plane Algebraical Geometry (1860) and Euclid and his Modern Rivals
(1879). His persona as a vibrant and creative children’s author was in marked contrast
to his more sober mathematical publications. Indeed, as a mathematician, while cer-
tainly painstaking and methodical, Dodgson was far from famous or first-rate, being
rather conservative in his tastes and approach.

The best illustration of this is his dogmatic and reactionary insistence on the supe-
riority of Euclid’s Elements as a mode of teaching geometry. It is perhaps unfortunate
that much of Dodgson’s mathematical work was devoted to matters arising from the
study of Euclid’s Elements and Euclidean geometry, for the simple reason that the El-
ements is far less widely used in mathematics teaching today than in Dodgson’s day,
when it was virtually ubiquitous. Consequently, none of Dodgson’s geometrical work
is used nowadays.

Although more of a recreational mathematician than a serious researcher, Dodgson
did make a number of small contributions to the subject, most of which are largely un-
known to today’s mathematicians [2]. Some of these would nowadays be classified as
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part of game theory, although that subject did not really come into existence until after
the Second World War. In his analysis of tennis tournaments as well as his study of
the theory of elections and voting patterns, Dodgson’s work pre-dated the birth of this
topic by over half a century [3]. His work in logic was also progressive. Although his
published work was largely recreational in style, his (unpublished) work on symbolic
logic was ahead of its time in several respects, such as the use of trees and truth tables
to solve specific logic problems [5].

Yet, somewhat paradoxically, we are told that Dodgson’s innate originality forms
the chief obstacle to his mathematical work. “He read comparatively little of the works
of other mathematicians or logicians, preferring to develop his theories out of his own
mind. This method had its advantages, no doubt, yet it not only gave him a lot of
unnecessary trouble but deprived him of the chance of escaping avoidable mistakes.
In fact, he handled scientific matters in the same way as he dealt with conversational
language, and the method was never likely to produce—nor did it produce—a mathe-
matical achievement of comparable value, in its own line, to Alice in Wonderland.” [9,
p. 132]

Interestingly, Dodgson’s most original mathematical research was undertaken in the
mid-1860s, at roughly the same time as the publication of Alice In Wonderland. As he
noted in his diary on 27 February 1866: “Discovered a process for evaluating arithmeti-
cal Determinants by a sort of condensation and proved it up to 42 terms” [1, p. 334].
This method was published in his first and, as it turned out, his last research paper,
in the Proceedings of the Royal Society of London later that year and introduced his
‘condensation’ method for evaluating large determinants. It was later incorporated in
his only algebra book, An Elementary Treatise on Determinants, with their application
to simultaneous linear equations and algebraical geometry, published in 1867.

Jacobi’s theorem
As Dodgson himself acknowledged, his method was an application of a “well-known
theorem in determinants” [7, p. 152], but he said nothing about where it came from.
In fact, the theorem on which his method was based can be traced back to Jacobi,
although special cases of it had been derived by Lagrange in 1773, Desnanot in 1819,
and Cauchy and Minding in 1829.1 Jacobi’s first statement and proof of the theorem
appeared in a paper in Crelle’s Journal in 1833, with the result being repeated and
elaborated in further papers of 1835 and 1841, also in Crelle [10], [11], [12].

In his Elementary Treatise on Determinants, Dodgson stated Jacobi’s theorem as
follows:

If there be a square Block of the nth degree, and if in it any Minor of the mth
degree be selected: the Determinant of the corresponding Minor in the adjugate
Block is equal, in absolute magnitude, to the product of the (m − 1)th power of
the Determinant of the first Block, multiplied by the Determinant of the Minor
complemental to the one selected. [8, p. 25]

To understand this theorem in its most general form, we need one more definition:

1One special case of Jacobi’s theorem is given by Bressoud [6, pp. 112–113].

VOL. 38, NO. 2, MARCH 2007 THE COLLEGE MATHEMATICS JOURNAL 89



The adjugate of an n × n matrix A is

A′ =

⎛
⎜⎜⎜⎜⎜⎝

a′
11 a′

12 · · · a′
1n

a′
21 a′

22 · · · a′
2n· · · ·

· · · ·
· · · ·

a′
n1 a′

n2 · · · a′
nn

⎞
⎟⎟⎟⎟⎟⎠

,

where a′
i j = (−1)i+ j det[Ai j ] is the cofactor of ai j in A, and where [Ai j ] is the minor

matrix obtained by deleting the i th row and j th column in A.
If

A =
⎛
⎜⎝

2 1 −1 −3
1 −2 3 0
3 1 2 −1
0 −2 3 1

⎞
⎟⎠ ,

then its adjugate can be computed to be

A′ =
⎛
⎜⎝

−7 4 5 −7
7 −14 −13 11
1 2 1 1

−20 14 16 −14

⎞
⎟⎠ .

Now recall that, taking m = 2, we can obtain the 2 × 2 minor
(

2 −3
0 1

)
by deleting the

second and third rows and columns from matrix A. Its corresponding minor in A′ is( −7 −7
−20 −14

)
, and its complementary minor in A is

(−2 3
1 2

)
, which is intA. Thus, by

Jacobi’s theorem, we have

det

( −7 −7
−20 −14

)
= det A · det(int A),

from which we again deduce that det A = 6.
Using modern terminology, we can state the general theorem as follows:

Theorem 2.2 Let A be an n × n matrix, let [Ai j ] be an m × m minor of A, where
m < n, let [A′

i j ] be the corresponding m × m minor of A′, and let [A∗
i j ] be the comple-

mentary (n − m) × (n − m) minor of A. Then

det[A′
i j ] = (det A)m−1 · det[A∗

i j ].

Of course, what Dodgson noticed was that Jacobi’s theorem provides a useful algo-
rithm for finding det A. Since this theorem is therefore central to Dodgson’s method
and is not universally known, we will outline a proof of it, letting the reader fill in the
gaps where appropriate.

2In his 1833 paper, Jacobi [10] used the notation
∑±α′

1α
′′
2 . . . α

(n)
n to represent det A and

∑ ±β ′
1β

′′
2 . . . β

(n)
n

to represent the adjugate of A, so he stated the general version of his theorem as
∑ ±β ′

1β
′′
2 . . . β

(m)
m =(∑±α′

1α
′′
2 . . . α

(n)
n

)m−1 ∑ ±α
(m+1)
m+1 α

(m+2)
m+2 . . . α

(n)
n .

90 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



Outline of proof. Without loss of generality, it is sufficient to prove Jacobi’s theo-
rem for the case of consecutive minors.

Let

A =

⎛
⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · ·
· · · ·
· · · ·

an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎟⎠

,

and suppose that [Ai j ] is the m × m minor in the upper left corner of A.
By Laplace’s theorem, A · A′ = det A · I , so det(A · A′) = (det A)(det A′) =

(det A)n .
Now modify A′ to form the n × n matrix

A′
I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a′
11 a′

12 · · · a′
1m 0 0 · · · 0

a′
21 a′

22 · · · a′
2m 0 · ·

· · · · · · ·
· · · · · · ·
· · · · · · ·

a′
m1 a′

m2 · · · a′
mm 0 · · · · 0

a′
(m+1)1 a′

(m+1)2 · · · a′
(m+1)m 1 0 · · 0 0

· · · 0 1 ·
· · · 0 · ·
· · · · · ·
· · · · · 0

a′
n1 a′

n2 · · · a′
nm 0 0 · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that we have replaced the last n − m columns of A′ with the corresponding
columns from the n × n identity matrix, and that the m × m minor in the top left
corner of A′

I is [A′
i j ]. Then

A · A′
I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

det A 0 · · 0 a1(m+1) · · · a1n

0 · · · 0 a2(m+1) · · · a2n

· · · · · ·
· · 0 · · ·
0 · · 0 det A am(m+1) · · · amn

0 · · · 0 a(m+1)(m+1) · · · a(m+1)n

· · · · · ·
· · · · · ·
· · · · · ·
0 · · · 0 an(m+1) · · · ann

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The determinant of this product is

(det A) · (det A′
I ) = det(A · A′

I ) = (det A)m · det[A∗
i j ].

And, since det(A′
I ) = det[A′

i j ],

det[A′
i j ] = (det A)m−1 · det[A∗

i j ].
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“De-cyphering” determinants. Since Dodgson’s algorithm restricts itself entirely
to the calculation of 2 × 2 determinants, it is often simpler than the usual method, even
in the case of large matrices. For example, in the 5 × 5 case, instead of carrying out
120 multiplications via the usual process, Dodgson’s method requires only 60 (plus a
few divisions, of course).

Of course, its principal weakness is that it is not well-adapted to handling zeros, or
cyphers as Dodgson called them. Since the algorithm relies on dividing by numbers
in the interior of a matrix, if zeros do occur in the interior, they have to be removed
by elementary row or column operations. However, this is not always possible, and in
such cases, the method will break down. But despite this weakness, in many cases the
algorithm can still be used effectively.

To illustrate this, we will give an example from Dodgson’s 1866 paper showing how
to deal with zeros occurring during the process of condensation [7, p. 152]. Condensing
the 5 × 5 matrix

A =

⎛
⎜⎜⎜⎝

2 −1 2 1 −3
1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2

⎞
⎟⎟⎟⎠ ,

we get

A(1) =
⎛
⎜⎝

5 −5 −3 −1
−3 −3 −3 3
3 3 3 −1

−5 −3 −1 −5

⎞
⎟⎠ ,

and condensing again gives

A(2) =
⎛
⎝−30 6 −12

0 0 6
6 −6 8

⎞
⎠ .

Unfortunately, the zero in the interior of this matrix makes it impossible to continue the
process. However, if we use permissible elementary row operations, the determinant
of the resulting matrix will be the same as the determinant of the original matrix. For
our matrix, we simply need to move the top row to the bottom and move all the other
rows up one. This gives us

A∗ =

⎛
⎜⎜⎜⎝

1 2 1 −1 2
1 −1 −2 −1 −1
2 1 −1 −2 −1
1 −2 −1 −1 2
2 −1 2 1 −3

⎞
⎟⎟⎟⎠ .

We now perform the condensation method on this to obtain

A∗(1) =
⎛
⎜⎝

−3 −3 −3 3
3 3 3 −1

−5 −3 −1 −5
3 −5 1 1

⎞
⎟⎠ ,
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and again to get
⎛
⎝ 0 0 −6

6 6 −16
34 −8 4

⎞
⎠ .

Notice that the troublesome zeros have now moved out of the interior. Divide each
term by the corresponding term in the interior of the original matrix to obtain

A∗(2) =
⎛
⎝ 0 0 6

6 −6 8
−17 8 −4

⎞
⎠ .

Condensing this gives
(

0 36
−54 −40

)
,

and dividing by the interior entries, we arrive at

A∗(3) =
(

0 12
18 40

)
.

The determinant of this is −216. And finally, dividing by −6, we find that the deter-
minant of the original matrix is 36.

Epilogue. Now that we have seen a basic overview of Dodgson’s condensation
method and the mathematics behind it, two simple questions remain:

1. How or where did Dodgson come across Jacobi’s theorem?
As noted above, Dodgson was certainly not what could be described as an active

research mathematician. Indeed, he did not belong to any mathematical or scientific
societies, nor did he subscribe to the major mathematics research journals of the day.
It is therefore very unlikely that he came across Jacobi’s theorem in its original form
while perusing a copy of Crelle’s Journal. So he must have learnt about it from a
secondary source. But where? There are two possibilities.

As an Oxford-bred mathematician, Dodgson would no doubt have come into con-
tact with the very first textbook on the subject, Elementary Theorems relating to De-
terminants, published by his elder Oxford contemporary, the English mathematician
William Spottiswoode, in 1851. Indeed, because of the latter’s authority on the sub-
ject of determinants, Dodgson had contacted Spottiswoode with a question concerning
computations in early 1866. Spottiswoode was later called upon to referee Dodgson’s
paper for the Royal Society [1, p. 331]. Given then that the two men were in con-
tact, and that Dodgson was aware of Spottiswoode’s expertise on the matter, it seems
highly likely that Dodgson had read Spottiswoode’s book. If so, he could not fail to
have noticed a whole section devoted to proving Jacobi’s theorem [17].

But there is no mention of Spottiswoode in any of Dodgson’s work on determi-
nants. However, in the preface to his Elementary Treatise on Determinants, he notes
that, of the 70 propositions contained in the book, “ten are substantially taken from
Baltzer’s treatise on Determinants” [8, p. iii]. By this he is referring to a German text-
book, Theorie und Anwendung der Determinanten, published by Richard Baltzer in
1857, which, sure enough, also contains Jacobi’s theorem [4]. This excellent book was
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quickly translated into French in 1861, and reached a second edition in 1864. By 1865,
Dodgson was writing in his diary: “I have been at work for some days on an elemen-
tary pamphlet on Determinants which I think of printing” [1, p. 334]. Could it have
been Baltzer’s work that prompted Dodgson’s interest in the subject? Maybe. Or was
it Spottiswoode’s book that had first piqued his interest as a student in the 1850s and
Baltzer’s that reignited it ten years later? Perhaps. But like so many questions in the
history of mathematics, we can never really know.

2. Given that Dodgson’s method is so efficient, justified, and useful, why is it not
better known?

For a start, Dodgson’s Treatise on Determinants was not a bestseller, not even sell-
ing enough copies to warrant a second edition, in contrast to his other mathemati-
cal publications, many of which ran into several editions. Thus, most mathematicians
would not only have been unaware of his method, but also much of the content of the
book. This is illustrated by the fact that, although this work contains the first appear-
ance in print of a well-known theorem involving simultaneous linear equations (“For
solutions to exist, the rank of the augmented coefficient matrix must equal the rank
of the original coefficient matrix”), this result has never been credited to him, and in
fact is now known as the Kronecker-Capelli Theorem. In addition to this, even if the
book had been widely read, the reader would have been slowed down and confused
by the cumbersome terminology employed. Dodgson insisted on using his own rather
odd names and notation instead of standard ones. For example, instead of “matrix,” he
used the word “block,” and instead of “a11, a12, a13, . . . , ann” for the matrix entries,
he would write “1 � 1, 1 � 2, 1 � 3, . . . , n � n.” Thus the limited availability of the book
together with the obscurity of the text itself made it highly unlikely that Dodgson’s al-
gorithm would catch on.3 Even Dodgson himself said that he regarded it merely as “a
fanciful addition to the processes already in use” [8, p. v]. Nevertheless, when teaching
linear algebra, we have consistently found Dodgson’s method to be the most popular
method among our students for evaluating large determinants. Curious!

Acknowledgments. The authors wish to thank the editor and an anonymous referee for help-
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Ted Ridgway (ridgwat@arc.losrios.cc.ca.us), American River College, detected
the same—unfortunately not uncommon—error involving the use of the word
“percent” in two books that he read recently.

From A Short History of Nearly Everything by Bill Bryson (Broadway Books,
2003), page 16:

Rees maintains that six numbers in particular govern our universe, and
that if any of these values were changed even very slightly things could
not be as they are. For example, for the universe to exist as it does re-
quires that hydrogen be converted to helium in a precise but comparatively
stately manner—specifically, in a way that converts seven one-thousandths
of its mass to energy. Lower that value very slightly—from 0.007 percent
to 0.006 percent, say—and no transformation could take place: the uni-
verse would consist of hydrogen and nothing else. Raise the value very
slightly—to 0.008 percent—and bonding would be so wildly prolific that
the hydrogen would long since have been exhausted. In either case, with
the slightest tweaking of the numbers the universe as we know and need it
would not be here.

From Fast Food Nation: The Dark Side of the All-American Meal by Eric
Schlosser (Houghton Mifflin, 2001), page 124 of the Perennial 2002 edition:

The human nose, however, is still more sensitive than any machine yet
invented. A nose can detect aromas present in quantities of a few parts per
trillion—an amount equivalent to 0.000000000003 percent.
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