1. Suppose A is a fixed 2×2 matrix. Show that the set $W = \{ X : AX =XA \}$ is a subspace of $M_{2,2}$.

 (a) Suppose that B and C are matrices in the set W.
 This means $AB = BA$ and $AC = CA$.
 Then $A(B + C) = AB + AC = BA + CA = (B + C)A$.
 And $A(B + C) = (B + C)A$ means that $B + C \in W$.
 Therefore W is closed under addition.

 (b) Suppose that $B \in W$ and $c \in \mathbb{R}$.
 The fact that $B \in W$ means $AB = BA$.
 Observe that $A(cB) = c(AB) = c(BA) = (cB)A$.
 And $A(cB) = (cB)A$ means $cB \in W$.
 Therefore W is closed under scalar multiplication.

Parts (a) and (b) above show that W is closed under addition and scalar multiplication, so W is a subspace.