Carl Quiz: Section 4.3	Linear Algebra	October 11, 2018
	MATH 310	
Name:	R. Hammack	Score:

1. Let $V = C(-\infty, \infty)$ be the vector space of continuous functions $f : \mathbb{R} \to \mathbb{R}$. Let $W = \{f \in V : f(0) = 1\}$. (That is, *W* is the set of all functions in V that equal 1 when you plug 0 into them.) Is *W* is a subspace of V? Why or why not?

The subset $W \subseteq V$ is NOT a subspace of V because W is not closed under scalar multiplication. To see this let f be the function $f(x) = x^2 + 1$. Notice that $f(0) = 0^2 + 1 = 1$, and therefore $f \in W$. But 2f is the function $2f(x) = 2(x^2 + 1)$, and so $(2f)(0) = 2f(0) = 2(0^2 + 1) = 2 \neq 1$. Hence $2f \notin W$.

In summary, we have found an $f \in W$ for which $2f \notin W$.

Therefore W is not a subspace because it is not closed under scalar multiplication.

2. Let A be a fixed $m \times n$ matrix. Is the set $W = \{x \in \mathbb{R}^n : Ax = 0\}$ a subspace of \mathbb{R}^n ? Why or why not?

First we will show that *W* is closed under addition. Suppose $\mathbf{u}, \mathbf{v} \in W$. We wish to show $\mathbf{u} + \mathbf{v} \in W$. Since $\mathbf{u} \in W$, we know $A\mathbf{u} = \mathbf{0}$, by definition of *W*. Likewise, since $\mathbf{v} \in W$, we know $A\mathbf{v} = \mathbf{0}$. Notice that $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$. But $A(\mathbf{u} + \mathbf{v}) = \mathbf{0}$ means $\mathbf{u} + \mathbf{v} \in W$. Hence *W* is indeed closed under addition.

Next will show that *W* is closed under scalar multiplication. Suppose $c \in \mathbb{R}$ and $u \in W$. We wish to show $cu \in W$. Since $u \in W$, we know Au = 0, by definition of *W*. Notice that A(cu) = cAu = c0 = 0. But A(cu) = 0 means $cu \in W$. Hence *W* is indeed closed under scalar multiplication.

Thus W is a subspace of \mathbb{R}^n because it is closed under addition and scalar multiplication