Name: \qquad
Directions: Please answer in the space provided. No calculators. Please put all phones, etc., away.

1. Suppose A, B and X are invertible matrices, and $(5 B X)^{-1}=A$. Express X in terms of A and B.

$$
\begin{aligned}
(5 B X)^{-1} & =A \\
\left((5 B X)^{-1}\right)^{-1} & =A^{-1} \\
5 B X & =A^{-1} \\
B X & =\frac{1}{5} A^{-1} \\
B^{-1}(B X) & =B^{-1}\left(\frac{1}{5} A^{-1}\right) \\
\left(B^{-1} B\right) X & =\frac{1}{5} B^{-1} A^{-1} \\
I X & =\frac{1}{5} B^{-1} A^{-1} \rightarrow X=\frac{1}{5} B^{-1} A^{-1}
\end{aligned}
$$

2. Find the inverse of the matrix $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]$, if it exists, or verify that it does not exist.

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \underset{\longrightarrow}{R_{2}-R_{1} \rightarrow R_{2}}\left[\begin{array}{lll|rrr}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \stackrel{R_{2} \leftrightarrow R_{3}}{\longrightarrow}\left[\begin{array}{lll|rrr}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & -1 & 1 & 0
\end{array}\right] \xrightarrow{R_{2}-R_{3} \rightarrow R_{2}} \xrightarrow{\longrightarrow}} \\
& {\left[\begin{array}{rrr|rrr}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 & 1 & 0
\end{array}\right] \xrightarrow{R_{1}-R_{2} \rightarrow R_{1}}\left[\begin{array}{lll|rrr}
1 & 0 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 1 & -1 & 1 \\
0 & 0 & 1 & -1 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

Answer: $A^{-1}=\left[\begin{array}{rrr}0 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 0\end{array}\right]$

Check: $\quad A^{-1}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{rrr}0 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

