Name: $\qquad$

Score: 10

Directions: Please answer in the space provided. No calculators. Please put all phones, etc., away.

1. For this problem, $\mathrm{A}=\left[\begin{array}{rrr}3 & 1 & -5 \\ 4 & 2 & 2\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], \quad \mathrm{C}=\left[\begin{array}{r}-2 \\ 4\end{array}\right]$, and $\mathrm{D}=\left[\begin{array}{lll}4 & -1 & -1\end{array}\right]$.

Preform the indicated operations or state that they are not possible.
(a) $\quad \mathrm{AD}^{\top}=\left[\begin{array}{rrr}3 & 1 & -5 \\ 4 & 2 & 2\end{array}\right]\left[\begin{array}{r}4 \\ -1 \\ -1\end{array}\right]=\left[\begin{array}{l}16 \\ 12\end{array}\right]$
(b) $A D^{\top}-2 \mathrm{C}=\left[\begin{array}{l}16 \\ 12\end{array}\right]-2\left[\begin{array}{r}-2 \\ 4\end{array}\right]=\left[\begin{array}{l}16 \\ 12\end{array}\right]-\left[\begin{array}{r}-4 \\ 8\end{array}\right]=\left[\begin{array}{r}20 \\ 4\end{array}\right]$
(c) $\quad \mathrm{B}^{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$
(d) $\quad \mathrm{B}^{2}-2 \mathrm{~B}+\mathrm{I}_{2}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]-2\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]-\left[\begin{array}{ll}2 & 2 \\ 0 & 2\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
2. Suppose $\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]=\left[\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right]$. Find $\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]$.

Solution: Multiplying the matrices on the left gives $\left[\begin{array}{ll}w+3 x & 2 w+4 x \\ y+3 z & 2 y+4 z\end{array}\right]=\left[\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right]$. This yields the system

$$
\left\{\begin{aligned}
& w+3 x \\
&=1 \\
& 2 w+4 x=4 \\
& y+3 z=0 \\
& 2 y+4 z=2
\end{aligned}\right.
$$

We need to solve this to find $w, x, y$ and $z$. Using our usual method,

$$
\begin{aligned}
& {\left[\begin{array}{rrrll}
1 & 3 & 0 & 0 & 1 \\
2 & 4 & 0 & 0 & 4 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 2 & 4 & 2
\end{array}\right] \begin{array}{c}
\mathrm{R}_{2}-2 \mathrm{R}_{1} \rightarrow \mathrm{R}_{2} \\
\mathrm{R}_{4}-2 \mathrm{R}_{3} \rightarrow \mathrm{R}_{4}
\end{array}\left[\begin{array}{rrrrr}
1 & 3 & 0 & 0 & 1 \\
0 & -2 & 0 & 0 & 2 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & -2 & 2
\end{array}\right] \begin{array}{c}
\substack{1 \\
-\frac{1}{2} R_{2} \rightarrow R_{2} \\
-\frac{1}{2} R_{4} \rightarrow R_{4} \\
\longrightarrow}
\end{array}\left[\begin{array}{rrrrrr}
1 & 3 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1 & -1
\end{array}\right] \begin{array}{l}
\begin{array}{l}
R_{1}-3 R_{2} \rightarrow R_{1} \\
R_{3}-3 R_{4} \rightarrow R_{3} \\
\longrightarrow
\end{array}
\end{array}} \\
& {\left[\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 4 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & -1
\end{array}\right] \Longrightarrow\left\{\begin{array}{llllll}
w & & & & = & 4 \\
& x & & & & = \\
& & -1 \\
& & y & & & = \\
& & & z & = & -1
\end{array}\right.}
\end{aligned}
$$

Answer: $\left[\begin{array}{ll}w & x \\ y & z\end{array}\right]=\left[\begin{array}{ll}4 & -1 \\ 3 & -1\end{array}\right]$

