Given \(y = f(x) \), we have an intuitive sense of what \(\lim_{x \to a} f(x) = L \) means.

"\(f(x) \) can be made arbitrarily close to \(L \) by choosing \(x \) sufficiently close to \(a \)."

Similarly, \(\lim_{(x,y) \to (a,b)} f(x,y) = L \)

means \(f(x,y) \) can be made arbitrarily close to \(L \) by choosing \((x,y) \) sufficiently close to \((a,b) \).

But this is a bit vague. For one thing, there are lots of ways for \((x,y)\) to approach \((a,b)\).

Also, what does "close" mean?

Answer: *Within some small distance \(\varepsilon \) or \(\delta \),

\[
\begin{align*}
(f(x,y) \text{ close to } L) & \iff (S(x,y) \text{ is within } \varepsilon \text{ units of } L) \iff |f(x,y) - L| < \varepsilon \\
(x,y) \text{ close to } (a,b) & \iff ((x,y) \text{ is within a radius of } \delta \text{ from } (a,b)) \iff \sqrt{(x-a)^2 + (y-b)^2} < \delta
\end{align*}
\]

Precise Definition

\(\lim_{(x,y) \to (a,b)} f(x,y) = L \) means that

for any \(\varepsilon > 0 \) (no matter how small),

there is a \(\delta > 0 \) (depending on \(\varepsilon \)) for which,

\(|f(x,y) - L| < \varepsilon \) whenever \(\sqrt{(x-a)^2 + (y-b)^2} < \delta \)

i.e., can make \(f(x,y) \)

this close to \(L \) by making \((x,y)\)

this close to \((a,b)\)
Using this definition, the usual limit rules can be proved in this more general setting:

\[
\lim_{(x,y) \to (a,b)} \frac{f(x,y)}{g(x,y)} = \lim_{(x,y) \to (a,b)} \frac{f(x,y)}{g(x,y)} \left(\text{provided both limits exist} \right)
\]

Read the complete list in the book—it should look familiar.

\[\lim_{(x,y) \to (1,1)} 3x^2y + \frac{x}{y^3} = \ldots = 3 \cdot 1^2 \cdot 1 + \frac{1}{2^3} = 6 + \frac{1}{8} = \frac{49}{8}\]

\[\lim_{(x,y) \to (1,1)} \frac{x^3 - y^3}{x-y} = \lim_{(x,y) \to (1,1)} \frac{(x-y)(x^2 + xy + y^2)}{x-y} = \lim_{(x,y) \to (1,1)} (x^2 + xy + y^2) = 3\]

\[\text{Can't plug in (1,1), so try to cancel?}\]

Sometimes you can exploit a familiar limit like \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1\) due to \(x^2 + y^2 - 2x^2 \to 0\)

\[\lim_{(x,y) \to (\pi, \pi)} \frac{\sin(x^2 + y^2 - 2\pi^2)}{x^2 + y^2 - 2\pi^2} = 1\quad \text{(because } x^2 + y^2 - 2\pi^2 \to 0)\]

Example

\[\lim_{(x,y) \to (0,0)} \frac{x^2 y}{x^4 + y^2} = ?\]

Problem: the denominator goes to 0, but nothing seems to cancel it. What to do?

Remember: the limit should be independent of how \((x,y)\) approaches \((0,0)\).

If \((x,y) \to (0,0)\) along the \(x\)-axis (where \(y=0\)) we get

\[\lim_{(x,y) \to (0,0)} \frac{x^2 y}{x^4 + y^2} = \lim_{(x,y) \to (0,0)} \frac{x^2 0}{x^4 + 0^2} = 0\]

Same answer \(0\) if \((x,y) \to (0,0)\) along the \(y\)-axis.

So is the limit \(0\)?

Now let \((x,y) \to (0,0)\) along the parabola \(y = x^2\)

\[\lim_{(x,y) \to (0,0)} \frac{x^2 y}{x^4 + y^2} = \lim_{(x,y) \to (0,0)} \frac{x^2 x^2}{x^4 + (x^2)^2} = \lim_{(x,y) \to (0,0)} \frac{x^4}{2x^4} = \frac{1}{2} \neq 0\]

Conclusion LIMIT DNE
Continuity

This is a simple but significant issue. There are many useful theorems that hold only for continuous functions.

This carries over almost directly from the one-variable case.

Definition A function \(f(x, y) \) is **continuous** at \((a, b)\) if:

1. \(f(a, b) \) is defined,
2. \(\lim_{(x, y) \to (a, b)} f(x, y) \) exists,
3. \(\lim_{(x, y) \to (a, b)} f(x, y) = f(a, b) \),

\(\text{all 3 must hold!} \)

Function \(f(x, y) \) is **continuous on a region** \(R \) if it’s continuous at every point \((a, b)\) in \(R \).

Examples

- Hole in graph, \(1, 3 \) fail
- Tear in graph, \(2, 3 \) fail
- Only \(3 \) fails

Not continuous at \((a, b)\)

continuous at \((a, b)\)

Low down: Continuity means no breaks holes or tears.

Graph is an unbroken (if curved) sheet.

These same ideas apply to functions of more than two variables. — READ THE TEXT.