3. ((16 points)	Prove:	If $n \in \mathbb{Z}$, then	$4 n^2$	or	4 ($(n^2 + 3)$).
J. 1	(TO POLLIOS	,	/ C , CIICII	-1.0	-	-11	,,,	, .

[Use direct proof, with cases]

4. (16 points) Suppose $n \in \mathbb{Z}$. **Prove:** If n^2 is even, then n is even.

[Use contrapositive.]

5. (16 points) Suppose $a, b, c \in \mathbb{Z}$. **Prove:** If a|b and b|c, then a|c. [Use any appropriate method.]

6. (15 points) Prove or disprove: If $a, b \in \mathbb{N}$, then a + b < ab.

7. (15 points) Prove or disprove: Given $a,b,c\in\mathbb{Z},$ if a|bc, then a|b or a|c.