Name: \qquad R. Hammack

Score: \qquad

Directions No calculators. Please put all phones, smart watches, etc., away.

1. (16 points) This problem concerns the following statement.
P : There is a subset X of \mathbb{N} for which $X \cap \mathbb{N}=\emptyset$.
(a) Is the statement P true or false? Explain.
(b) Write the statement P in symbolic form.
(c) Form the negation $\neg P$ of your answer from (b), and simplify.
(d) Write the negation $\neg P$ as an English sentence. (The sentence may use mathematical symbols.)
2. (6 points) Complete the first and last lines of each of the following proof outlines.
```
Proposition: If \(P\), then \(Q\). Proof: (Direct)
```

Suppose \qquad \vdots
Therefore \qquad .

Proposition: If P, then Q. Proof: (Contrapositive)
Suppose \qquad
\vdots
Therefore \qquad $-$

Proposition: If P, then Q. Proof: (Contradiction)
Suppose \qquad
:
Therefore \qquad - .
5. (16 points) Suppose $a, b, c \in \mathbb{Z}$. Prove: If $a \mid b$ and $b \mid c$, then $a \mid c$. [Use any appropriate method.]
6. (15 points) Prove or disprove: If $a, b \in \mathbb{N}$, then $a+b<a b$.
7. (15 points)Prove or disprove: Given $a, b, c \in \mathbb{Z}$, if $a \mid b c$, then $a \mid b$ or $a \mid c$.

