Name: \qquad R. Hammack

Score: \qquad

Directions No calculators. Please put all phones, etc., away.

1. (12 points) This problem concerns the following statement.
P : There is a number $n \in \mathbb{Z}$ for which $m \mid n$ for every $m \in \mathbb{Z}$.
(a) Is the statement P true or false? Explain.
(b) Write the statement P in symbolic form.
(c) Form the negation $\sim P$ of your answer from (b), and simplify.
(d) Write the negation $\sim P$ as an English sentence.
(The sentence may use mathematical symbols.)
2. (2 points) Complete the first and last lines of each of the following proof outlines.

Proposition: If P, then Q. Proof: (Direct)
Suppose \qquad \vdots
Therefore \qquad .
\square

Proposition: If P, then Q. Proof: (Contrapositive)
Suppose \qquad

Therefore \qquad -

Proposition: If P, then Q.
Proof: (Contradiction)
Suppose \qquad
:
Therefore \qquad
3. (12 points) Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$.

Prove: If $a \equiv b(\bmod n)$, then $a b \equiv b^{2}(\bmod n)$.
[Use direct proof.]
4. (12 points) Suppose $a, b, c \in \mathbb{Z}$. Prove: If $a \nmid b c$, then $a \nmid b$ and $a \nmid c$.
[Use contrapositive.]
6. (12 points) Suppose $a, b, c \in \mathbb{Z}$. Prove: If $a \mid b$ and $a \mid(b+c)$, then $a \mid c$.
7. (14 points) Suppose $n \in \mathbb{Z}$. Prove: $n^{2}+3$ is odd if and only if $n+2$ is even.
8. (12 points) Prove or Disprove: There is a set X for which $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$.
9. (12 points) Prove or Disprove: For all $a, b \in \mathbb{Z}$, if $a \mid b$ and $b \mid a$ then $a=b$.

