
CHAPTER 6

Inverse Trigonometric Functions

In solving trigonometric equations (as in Section 3.4) we typically reduce a
complex trigonometric equation to a simple one, such as sin(µ)= 1, with

the variable µ occurring inside the trig function. Then we have to reason
backwards and ask ourselves “What value of µ makes sin(µ)= 1?” Reflecting
on the unit circle, we might arrive at the solution µ = º

2 .
This is exactly the kind of backwards thinking needed to mentally eval-

uate inverse functions. We are in essence treating sin as if it had an inverse
and reasoning as

sin°1(1)=
√

angle µ for
which sin(µ)= 1

!

= º

2
.

But there is a slight problem with this. There are many values µ for
which sin(µ)= 1, namely µ = º

2 +k2º for any integer k. This is clear from the
unit circle. Start at µ = º

2 radians and take k laps (of length 2º) around the
circle to return to the same point, but at µ = º

2 +k2º radians. We still have
sin

°

º
2 +k2º

¢

= 1.
º
2 +k2º

This is also clear from the graph of sin, as sin(µ)= 1 at each µ = º
2 +k2º.

The graph reveals the crux of our problem: sin is not one-to-one because
the horizontal line y= 1 meets it at every µ = º

2 +k2º. So sin has no inverse.

µ
º
2

º
2 +1 ·2º º

2 +2 ·2º

1
y= sin(µ)

We have a dilemma. An inverse sin°1 would be useful, but it doesn’t
exist. We will overcome this by restricting the domain of sin.
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6.1 The Function sin°1

The function sin is not one-to-one, so technically it has no inverse. But in
the diagram below, the part of its graph (bold) over the interval

£

°º
2 , º2

§

is
a one-to-one function. This function has an inverse; we will call it sin°1.
For input, sin°1 accepts values of x between °1 and 1 (the outputs of sin).
Given this input, the output of sin°1(x) is the angle µ for which sin(µ) = x,
with the additional stipulation °º

2 ∑ µ ∑ º
2 . (See the diagram below.)

x

sin°1(x)
µ

y

°º
2

º
2

°1

1 y= sin(µ)

To repeat, sin°1 is the inverse of sin with its domain restricted to
£

°º
2 , º2

§

.
Notice sin°1 has domain [°1,1], and its range is

£

°º
2 , º2

§

.
There is a simple way to visualize sin°1. The left side of the box below

reminds us that sin(µ) is the height of the point P at µ on the unit circle:
For input µ we get an output sin(µ), the y-coordinate of P. The right side
of the box reverses this. The input °1∑ x ∑ 1 is the height of a point on the
unit circle; the output sin°1(x) is the angle °º

2 ∑ µ ∑ º
2 for which sin(µ)= x.

The functions sin and sin°1

sin(µ)=
°

y-coordinate of point P
¢

µ

1 sin(µ)

P

sin°1(x)=

0

B

@

angle µ

with °º
2 ∑ µ ∑ º

2
and sin(µ)= x

1

C

A

sin°1(x)

°º
2

º
2

1 x

This is a picture of sin°1. It says that a right triangle with hypotenuse
of length 1 and opposite leg of length x has an angle measuring sin°1(x)
radians. From this we can mentally work out sin°1(x) for many x.
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Here are a few examples. We will start out drawing a picture for each
one, though you will quickly reach the point of bypassing the picture in
favor of visualizing the situation in the mind’s eye.

First let’s find sin°1
≥p

3
2

¥

. Draw a half unit cir-
cle representing angles between °º

2 and º
2 , and

put a point on it at height
p

3
2 . This forms a famil-

iar 30-60-90 triangle with the 60± (or º
3 ) angle at

the origin. Thus

sin°1

√p
3

2

!

=

0

B

@

angle µ for
which °º

2 ∑ µ ∑ º
2

and sin(µ)=
p

3
2

1

C

A

= º

3
.

º
3

sin
°1

°

p 3
2

¢

°º
2

º
2

1 p
3

2

For another example, let’s find sin°1
≥

°
p

2
2

¥

.
First we draw the half-circle and locate the point
at height °

p
2

2 , this time below the x-axis. This
forms an angle of radian measure °º

4 . Thus

sin°1

√

°
p

2
2

!

=

0

B

@

angle µ for
which °º

2 ∑ µ ∑ º
2

and sin(µ)=°
p

2
2

1

C

A

=°º
4

.
°º

4

sin°1 °

°
p
2

2
¢

°º
2

º
2

1 °
p

2
2

Now let’s do sin°1(1). The point on the half-
circle at height 1 forms the angle º

2 , so

sin°1 (1)=

0

B

@

angle µ for
which °º

2 ∑ µ ∑ º
2

and sin(µ)= 1

1

C

A

= º

2
.

From the same picture we can see sin°1(°1)=°º
2

and sin°1(0)= 0.

sin
°1 (1)

°º
2

º
2

1

Of course we can’t do every such problem mentally. Consider sin°1 °1
3
¢

.
This poses a problem because we can’t think of a µ for which sin(µ) = 1

3 .
But using the sin°1 button on your calculator gives sin°1 °1

3
¢

º 0.39836909.1
Use your calculator sparingly. Do not allow it to obstruct the simple meaning
of sin°1.

1Your calculator should allow you to toggle between radian and degree mode. Test this
by working out sin°1(1). With degree mode you should get sin°1(1)= 90±. Radian mode gives
sin°1(1)= 1.5707963 (which is º

2 ).
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Finally, let’s investigate the graph of sin°1. Below is the graph of y= sin(x)
with the part on domain [°º

2 , º2 ] drawn bold. Reflecting this across the line
x = y gives the graph of y= sin°1(x), drawn dashed.

x

y

°º
2

º
2

°1

1

°º
2

º
2

°1

1 y= sin(x)

y= sin°1(x)

Erasing the clutter, the graph of sin°1(x) is shown again as Figure 6.1.
Notice that the domain of sin°1 is the interval [°1,1]. The range is

£

°º
2 , º2

§

.

x

y

°1 1

°º
2

º
2

y= sin°1(x)

Figure 6.1. The graph of sin°1(x). It has domain [°1,1] and range
£

°º
2 , º2

§

.

We remark that sin
°

sin°1(x)
¢

= x for any real number x in the domain
of sin°1, in accordance with the property f

°

f °1(x)
¢

= x. But we caution
that sin°1 °

sin(x)
¢

= x is not always true. Indeed consider x = 2º. Then
sin°1 °

sin(2º)
¢

= sin°1(0) = 0 6= 2º, so sin°1(sin(x)) 6= x in this particular case.
The reason for this apparent contradiction is that sin does not really have
an inverse. The function sin°1 is the inverse of sin with a restricted domain.
The value x = 2º is not in the restricted domain

£

°º
2 , º2

§

of sin and thus lies
outside the range of sin°1.
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Example 6.1 Find all solutions of the equation 4sin2(x)+3sin(x)= 1 that
are in the interval [0,2º].

Because of the second power of sin, it seems reasonable to try to solve
by factoring. For this we need zero on one side, so we rewrite as

4sin2(x)+3sin(x)°1= 0.

This factors as
°

4sin(x)°1
¢°

sin(x)+1
¢

= 0.

So x must be such that it makes one or the other factor zero. We consider
these cases separately.

First, if sin(x)+1= 0, then sin(x)=°1. There
is only one x in [0,2º] that makes this true,
and that is x = 3º

2 which is immediately evident
from the unit circle. Therefore one solution to
the equation is x = 3º

2 . 3º
2

Next suppose 4sin(x)° 1 = 0, so sin(x) = 1
4 .

We know no angle x making sin(x) = 1
4 , so we

cannot solve this from direct inspection of the
unit circle. But we can take sin°1 of both sides
of sin(x) = 1

4 , and doing this yields a solution
x = sin°1 °1

4
¢

, which is the indicated point on
the circle at height 1

4 , in the first quadrant.
There is another point at height 1

4 , in the second
quadrant, and this is at º° sin°1 °1

4
¢

. Taking
sin of either of these angles results in 1

4 so they
are the solutions of sin(x)= 1

4 .

º

sin°1 1
4º°sin°1 1

4

So the equation has three solutions, x = 3º
2 , sin°1 °1

4
¢

, and º° sin°1 °1
4
¢

.
Resorting to a calculator, x º 4.7123889, 0.25268024, 2.88891239.

Exercises for Section 6.1

Work these problems mentally, without a calculator.
1. sin°1 (°1) 2. sin°1

≥

°
p

3
2

¥

3. sin°1
≥

°
p

2
2

¥

4. sin°1 °

° 1
2
¢

5. sin°1 (1) 6. sin°1
≥p

3
2

¥

7. sin°1
≥p

2
2

¥

8. sin°1 ° 1
2
¢
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6.2 The Function cos°1

The cos function is certainly not one-to-one, so it doesn’t have an inverse
– unless we restrict its domain. The diagram below reveals that cos is
one-to-one on the domain [0,º]. (This part of the graph is drawn bold.)

x

cos°1(x)
µ

y

º

°1

0

1
y= cos(µ)

We define cos°1 to be the inverse of the function cos with domain [0,º].
The boxed diagrams below are visual descriptions of cos and cos°1. For

an angle µ we know that cos(µ) is the x-coordinate of the point P at µ on the
unit circle. Reversing this, to find cos°1(x), envision x as the x-coordinate of
a point on the upper half circle (encompassing all angles 0 ∑ µ ∑ º). Then
cos°1(x) is the angle µ between 0 and º for which cos(µ)= x.

The functions cos and cos°1

cos(µ)=
°

x-coordinate of point P
¢

µ

1

cos(µ)

P

cos°1(x)=

0

B

@

angle µ for
which 0∑ µ ∑º

and cos(µ)= x

1

C

A

cos°1(x)
º 0

1

cos(µ) x

To illustrate, let’s compute cos°1
≥p

3
2

¥

. We
first draw a point on the upper circle with
x-coordinate

p
3

2 . Our experience with the
unit circle tells us that this forms an an-
gle of º

6 radians. Thus cos°1
≥p

3
2

¥

= º
6 .

cos°1
p 3

2
º 0p

3
2

º
6
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Next consider the problem of cos°1 °

°1
2
¢

.
We first locate the point on the upper cir-
cle with x-coordinate °1

2 . Knowledge of
the unit circle tells us that this forms an
angle of 2º

3 radians, so cos°1 °

°1
2
¢

= 2º
3 .

co
s°

1
°

°
1 2

¢

º 0

° 1
2

2º
3

Now let’s do cos°1 (0). The point on the
upper circle with x-coordinate 0 is at º

2
radians. Therefore cos°1 (0)= º

2 .

You can also see from this drawing how
cos°1 (1)= 0 and cos°1 (°1)=º. cos

°1 (0)

º 0
0

º
2

Now that we can compute cos°1(x) let’s think about its graph. Below we
get the graph of y= cos°1(x) (dashed) by reflecting across the line y= x the
relevant part of the graph of y= cos(x) (bold).

y= x

x

y

º

º

1

º
2

º
2

0°1

°1 y= cos(x)

y= cos°1(x)

Erasing the preliminary steps, we get our final graph, in Figure 6.2.

x

y

º

1

º
2

0°1

y= cos°1(x) y= cos°1(x)

Figure 6.2. The graph of cos°1(x). It has domain is [°1,1] and range [0,º].
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6.3 The Functions tan°1 and sec°1

Now we will develop the functions tan°1 and sec°1, beginning with tan°1.
The function tan is definitely not one-to-one, but its graph suggests that we
can make it one-to-one by restricting its domain to the interval

£

°º
2 , º2

§

.

µ

y

° 3º
2

°º °º
2

º
2

º 3º
2

2º 5º
2

y= tan(µ)

Our visual descriptions of tan°1 and sec°1 will use a
right triangle whose adjacent side has length 1, shown here.
The opposite side is OPP = OPP

1 = OPP
ADJ = tan(µ), while the

hypotenuse is HYP = HYP
1 = HYP

ADJ = sec(µ). This is a picture
of tan(µ) and sec(µ). The number tan(µ) is the length of the
opposite side of the triangle; sec(µ) is its hypotenuse. 1

ta
n(
µ

)

se
c(
µ)

µ

Placing this on the unit circle gives a visual description of both tan(µ)
and tan°1(x). The left side of the box (below) states that tan(µ) is the opposite
side of our triangle. The right side reverses this: If the opposite side is x,
then the angle is tan°1(x).

The functions tan and tan°1

1

tan(µ)

µ

tan(µ)= (opposite side of triangle) tan°1(x)=

0

B

@

angle µ with
°º

2 ∑ µ ∑ º
2

and tan(µ)= x

1

C

A

1

x

tan°1(x)

°º
2

º
2
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As an example, consider tan°1(1). You can probably already do this
mentally without resorting to a picture: tan°1(1) is the angle µ in

£

°º
2 , º2

§

for which tan(µ) = 1. As tan
°

º
4
¢

= 1, we get tan°1(1) = º
4 . Drawing (a) below

reinforces this. It shows a triangle with adjacent side 1 and opposite side
x = 1. This is a 45-45-90 triangle, so the angle tan°1(1) must be º

4 .

1

1

tan°1(1)

°º
2

º
2

(a)

1

p
3

tan°1(°
p

3)

°º
2

º
2

(b)

Now think about tan°1 °

°
p

3
¢

. Drawing (b) shows the relevant triangle.
Because °

p
3 is negative, we orient the triangle so that the vertical side is

below the x-axis. This is a 30-60-90 triangle with the angle tan°1 °

°
p

3
¢

at
the 60± corner. Therefore tan°1 °

°
p

3
¢

=°º
3 .

Notice that as the opposite side x of our triangle
grows larger, the hypotenuse becomes more vertical,
and the angle tan°1(x) rotates closer to 90±, or º

2 radians.
Thus as x increases to 1 the value of tan°1(x) increases,
approaching º

2 . This is reflected in the graph of tan°1

below – the line y= º
2 is a horizontal asymptote. (This

graph is the reflection across the line y= x of the graph
of y= tan(x) with domain

£

°º
2 , º2

§

. The vertical asymptote
x = º

2 of tan(x) reflects to the horizontal asymptote y= º
2 .)

If x approaches °1, the triangle is below the x-axis, and
the angle tan°1(x) approaches °º

2 .

1

x

tan°1(x)

°º
2

º
2

x

°º
2

º
2 y= tan°1(x)y= tan

Figure 6.3. The graph of tan°1(x). Lines y=±º
2 are horizontal asymptotes.



The Functions tan°1 and sec°1 107

Now we explore the function sec°1(x). As usual, because sec(x) is not
one-to-one we will have to restrict its domain in order to get an inverse. Its
graph suggests that we should restrict it to the interval [0,º]. Actually, to
be absolutely precise, the point x = º

2 is not in the domain, so we restrict sec
to [0, º2 )[ (º2 ,º]. This is indicated by the bold part of the graph below.

µ

y

°º °º
2

º
2

º 3º
2

2º 5º
2

3º

1

°1

y= sec(µ)

We therefore define sec°1(x) to be the inverse of the function sec(x) with
restricted domain [0, º2 )[(º2 ,º]. At the beginning of this section we remarked
that sec(µ) is the length of the hypotenuse of a right triangle with angle µ

and adjacent side having length 1. This gives the following interpretation,
at least for values of µ with 0∑ µ < º

2 .

The functions sec and sec°1

1

se
c(µ

)

µ

sec(µ)= (hypotenuse of triangle) sec°1(x)=

0

B

@

angle µ for
which 0∑ µ ∑º

and sec(µ)= x

1

C

A

In other words, if the above triangle
has hypotenuse x, then sec°1(x) is the
radian measure its angle.

x

1
sec°1(x)

º 0

One slightly unsettling thing about this situation is that the picture
changes when º

2 < µ ∑º, when µ is in the second quadrant. Then the triangle
flips to the left of the y-axis, as illustrated below. Note sec(µ) is negative for
these µ, so we have to interpret the hypotenuse as a negative number. Thus
the diagram on the right shows the angle sec°1(x) for negative values of x.
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1

sec(µ)

µ

sec(µ)= – (hypotenuse of triangle) sec°1(x)=

0

B

@

angle µ for
which 0∑ µ ∑º

and sec(µ)= x

1

C

A

(Here x is regarded as negative,
so this is the picture of sec°1(x) for
negative x.)

x

1

sec°1(x)
º 0

Regardless of the diagrams, sec°1(x) is always the angle µ between 0 and
º with sec(µ)= x. Thus sec°1(x)∏ 0, though its input can be negative.
Example 6.2 Find sec°1 °

p
2
¢

, sec°1 (°2) and sec°1 (4).
Each of these can be solved without resorting to a diagram. Below we work
them first without a diagram, but then add the diagram to highlight the
geometric meaning of the inverse secant function.

First we find sec°1 °

p
2
¢

. If µ = sec°1 °

p
2
¢

,
then 0∑ µ ∑º and sec(µ)=

p
2, which means

cos(µ)= 1p
2
=

p
2

2 . From this we see µ = º
4 , that

is, sec°1 °

p
2
¢

= º
4 . The diagram reinforces

this. The triangle with hypotenuse
p

2 is a
45-45-90 triangle, with angle º

4 .

p
2

1

1

sec°1p2
º 0

Now for sec°1 (°2). If µ = sec°1 (°2), then
0∑ µ ∑º and sec(µ)=°2, or cos(µ)=°1

2 . From
this see µ = 2º

3 , so sec°1 (°2) = 2º
3 . Again a

diagram reinforces this. We interpret the
input of °2 as the hypotenuse of a triangle
in the second quadrant. Here it happens
that the triangle is half of an equiangular
triangle with sides of length 2. We read o�
sec°1(°2)= 120±, or 2º

3 radians.

°2

1

sec°1(°2)
º 0

Finally, consider sec°1 (4). If µ = sec°1 (4), then sec(µ) = 4 and cos(µ) = 1
4 .

Here there is no familiar angle µ for which cos(µ) = 1
4 . We have to resort

to a calculator approximation sec°1(4)º 1.31811607. (This is in radians. In
degree mode your calculator will give sec°1(4)º 75.52248781 degrees.)
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Now we investigate the graph of sec°1(x). Our strategy is to use the fact
that the graph of the inverse of a function is the function’s graph reflected
across the line y = x. In this case we start with the graph of y = sec(x)
restricted to the domain [0,º], shown bold below. (The other portions of
y= sec(x) are drawn in light gray.) This bold graph y= sec(x) reflects across
the line y= x (dotted) to the dashed graph, which is the graph of y= sec°1(x).
Notice how the vertical asymptote x = º

2 of sec(x) reflects to a horizontal
asymptote y= º

2 of sec°1(x).

x

y

º
2

º

1

°1

y= sec(x)

y= sec°1(x)y= x

º

º
2

Erasing all the junk, we get the clean graph below. Notice that the
domain of sec°1(x) is (°1,°1][ [1,1). The range is

£

0, º2
¢

[
°

º
2 ,º

¢

.

x

y

º

º
2 y= sec°1(x)y= tan

°1 1

Figure 6.4. The graph of sec°1(x). The line y= º
2 is a horizontal asymptote.

Take note that the interval (°1,1) is not a part of the domain of sec°1(x).
This is because all outputs of sec(x) are either greater than or equal to 1, or
less than or equal to 1. As the inputs of sec°1(x) are the outputs of sec(x), no
numbers in (°1,1) can be plugged into sec°1(x).

This follows also from our diagrams. The x in sec°1(x) is identified with
the hypotenuse of a right triangle on the unit circle, which never has a
length between 1 and °1.
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Exercises for Section 6.3
These problems are for both Sections 6.3 and 6.2.

Evaluate the following inverse trig functions. It is important to do them without a
calculator – this will greatly sharpen your understanding of inverse trig functions.

1. cos°1 ° 1
2
¢

2. cos°1
≥p

2
2

¥

3. cos°1
≥

°
p

2
2

¥

4. cos°1
≥

°
p

3
2

¥

5. tan°1 (0) 6. tan°1
≥

1p
3

¥

7. tan°1 °

p
3
¢

8. tan°1
≥

° 1p
3

¥

9. tan°1 (°1) 10. sec°1 (1) 11. sec°1 (2) 12. sec°1
≥

° 2p
3

¥

13. sec°1 °

°
p

2
¢

14. sec°1 (°1) 15. sec°1
≥

2
p

3
3

¥

16. sec°1
≥

2p
2

¥

17. sin°1 °

sin(5º)
¢

18. sin°1 °

sin
° 3º

2
¢¢

19. tan°1 °

tan
° 5º

4
¢¢

20. tan°1 °

tan
° 4º

3
¢¢

21. sec°1 °

sec
° 5º

4
¢¢

22. sec°1 °

sec
° 4º

3
¢¢

23. cos°1 °

cos(8º)
¢

24. cos°1 °

cos
° 3º

2
¢¢

25. Solve the equation tan2(x)= 1
3 . (Use a calculator to approximate the final answer,

if you wish.)

26. Find all solutions of tan2(x)+ tan(x)°2= 0 that are in the interval [°º,º]. (Use a
calculator to approximate the final answer, if you wish.)

27. Find all solutions of 5xsin(x)= x that are in the interval [°º,º]. (Use a calculator
to approximate the final answer, if you wish.)

28. Find all solutions of the equation 3cos(x)sin(x)+6cos(x)° sin(x)°2 = 0 that are
in the interval [0,2º]. (Use a calculator to approximate the final answer, if you
wish.)

29. Explain why cos°1(x)= º
2 °sin°1(x) for all x in the domain of cos°1 and sin°1.

30. Explain why cot°1(x)= tan°1
µ

1
x

∂

for all x ∏ 0.

31. Explain why sec°1(x)= cos°1
µ

1
x

∂

.

32. Explain why cos°1(x)+cos°1(°x)=º for all x in the domain of cos°1.

33. Explain why sin°1(x)+sin°1(°x)= 0 for all x in the domain of sin°1.
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6.4 The Functions cot°1 and csc°1

These functions are occasionally useful. But we will see that they are
expressible in terms of tan°1 and sec°1, so they need only a brief mention.

x
0 º

2
º

y= cot(x)

First, consider cot°1(x). The above graph of cot(x) shows that it is one-to-
one on the interval [0,º]. We thus define cot°1(x) as the inverse of cot(x) with
its domain restricted to [0,º]. Below is the graph of y= cot°1(x), which is the
reflection of the bold part of y= cot(x) (above) across the line y= x. Notice
how the vertical asymptote y = º of cot(x) reflects across to a horizontal
asymptote of cot°1(x). Likewise the y-axis (a vertical asymptote of cot(x))
reflects across to the x-axis, a horizontal asymptote of cot°1(x).

x

º

º
2

0
y= cot°1(x)

Figure 6.5. The function cot°1(x) has domain R and the range [0,º].

Given an input x, the corresponding output cot°1(x) is the angle µ for
which 0< µ <º and cot(µ)= x.

Compare the graphs of cot°1(x) in Figure 6.5 and tan°1(x) in Figure 6.3
on page 106. It appears that the graph of cot°1(x) is that of tan°1(x) reflected
across the x-axis and then moved up º

2 units. That is, we might guess

cot°1(x)= º

2
° tan°1(x).

This is indeed the case, as you are invited to verify. The fact that cot°1(x)
can be expressed in terms of tan°1(x) is one reason that we do not need to
invest much mental energy into the intricacies of cot°1(x), as least as long
as we have a good grip on tan°1(x).
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Now we’ll investigate the last remaining inverse trig function, csc°1(x).
We start with the graph of csc(x), below. This function is one-to-one on the
domain

°

°º
2 ,0

¢

[
°

0, º2
¢

, where the point x = 0 is not included because it is not
in the domain of csc(x). This part of the graph is shown bold.

x

y

°º
2

º
2

1

°1

y= csc(x)

0

The function csc°1(x) is defined to be the inverse of csc(x) on this restricted
domain. Reflecting the bold part of the graph of csc(x) across the line y= x
gives the graph of csc°1(x), below.

x

y

°º
2

º
2

0

y= csc°1(x)

Figure 6.6. The graph of csc°1(x). Its domain is (°1,°1][ [1,1) and its
range is

°

°º
2 ,0

¢

[
°

0, º2
¢

. The x-axis is a horizontal asymptote.

Given an input x, the corresponding output csc°1(x) is the angle µ for
which °º

2 < µ < º
2 and csc(µ)= x.

Comparing the graphs of csc°1(x) in Figure 6.6 and sec°1(x) in Figure 6.4
on page 109, it looks as if the graph of csc°1(x) is the graph of sec°1(x)
reflected across the x-axis, then moved up º

2 units. That is, we might guess

csc°1(x)= º

2
°sec°1(x).

This is indeed the case, as you can verify. Because csc°1(x) can be expressed
in terms of sec°1(x), we can downplay the importance of csc°1(x).
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6.5 Simplifications
On page 101 we noted that sin

°

sin°1(x)
¢

= x. Obviously the right side of this
equation is simpler than the left side. Taking sin of sin°1(x) wipes out the
trig functions.

What if we did cos
°

sin°1(x)
¢

? This too simplifies dramatically, but the
answer is not x. To understand how this expression simplifies, let’s examine
the angle sin°1(x) that we are taking cos of. We saw in Section 6.1 how to
draw a picture of sin°1(x). It is the angle of the following triangle whose
hypotenuse has length 1 and whose opposite side has length x.

1

sin°1(x)
x

Taking cos of this angle, we get the length of the adjacent side, as follows.

1

sin°1(x)
x

| {z }

cos
°

sin°1(x)
¢

Now, we can solve for this adjacent side using the Pythagorean theorem:
°

cos
°

sin°1(x)
¢ ¢2 + x2 = 12

°

cos
°

sin°1(x)
¢ ¢2 = 1° x2

cos
°

sin°1(x)
¢

=
p

1° x2.

Therefore we obtain the simplification

cos
°

sin°1(x)
¢

=
p

1° x2,

which holds true for all x in the domain
£

° 1,1
§

of sin°1(x). In essence,
taking cos of the angle sin°1(x) wipes out the trig functions, leaving a simpler
algebraic expression.

There will be occasions where such simplifications are very useful.
This section explains how to simplify expressions such as cos

°

sin°1(x)
¢

,
or cos

°

tan°1(x)
¢

, or sec
°

tan°1(x)
¢

, etc., that involve the composition of a trig
function with an inverse trig function. In every case the answer can be
found by applying the Pythagorean theorem to an appropriate triangle.
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Success at doing this revolves around understanding the geometric,
triangle interpretation of the six trig functions. This is summarized in the
six triangles below. In each case a trig function is interpreted as the length
of a triangle edge, where one other edge has length 1.

For example, in the first triangle, OPP = OPP
1 = OPP

ADJ = sin(µ), that is,
the opposite side has length sin(µ). You should check that the remaining
triangles are labeled correctly.

µ

µ

µ

µ

µ

µ

1

1
sin(µ)

cos(µ) 1

1

tan(µ)

sec(µ)
1

1

cot(µ)

csc(
µ)

Reversing input and output (as we have learned to do in this chapter)
yields corresponding triangles for each of the six inverse trig functions.

1

1
x

x
cos°1(x)

sin°1(x)

1

1

x

x

sec°1(x)

tan°1(x)

1

1

x

x

csc°1(x)

cot°1(x)

Now we will use these to solve a few instances of simplifications.

Example 6.3 Simplify sec
°

tan°1(x)
¢

.
Start with the triangle for tan°1(x), redrawn here. By
the Pythagorean theorem, the hypotenuse is

p
1+ x2, as

labeled. Now, sec
°

tan°1(x)
¢

= HYP
ADJ = HYP

1 =
p

1+x2

1 =
p

1+ x2.

Therefore we have obtained sec
°

tan°1(x)
¢

=
p

1+ x2.

p 1+
x2

1
tan°1(x)

x
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Example 6.4 Simplify sin
°

tan°1(x)
¢

.

Again we start with the triangle for tan°1(x). As before,
the Pythagorean theorem says the hypotenuse has lengthp

1+ x2. Now, sin
°

tan°1(x)
¢

= OPP
HYP = x

p
1+ x2

= x
p

1+ x2
.

p 1+
x2

1
tan°1(x)

x

Therefore we have obtained our answer sin
°

tan°1(x)
¢

= x
p

1+ x2
.

Example 6.5 Simplify tan
°

sec°1(x)
¢

.

We start by drawing the triangle for sec°1(x). This time things are
slightly trickier. Recall from Section 6.3 that we interpret the hypotenuse
length x to be positive or negative depending on whether the triangle is in
the first or second quadrant.

x positive

x

1
sec°1(x)

x negative

°x

1

sec°1(x)

Either way, the Pythagorean theorem says the opposite side has lengthp
x2 °1, which is positive, regardless of the sign of x.

x positive

x

1
sec°1(x)

p
x2 °1

x negative

°x

1

sec°1(x)

p
x2 °1

For the triangle in the first quadrant, tan
°

sec°1(x)
¢

= OPP
ADJ =

p
x2 °1
1

=
p

x2 °1.

Whereas in the second quadrant, tan
°

sec°1(x)
¢

= OPP
ADJ =

p
x2 °1
°1

=°
p

x2 °1.
Therefore our final answer is the piecewise function

tan
°

sec°1(x)
¢

=
( p

x2 °1 if x is positive
°
p

x2 °1 if x is negative

We will use this formula (as well as other simplifications in this section)
later in the course.



116 Inverse Trigonometric Functions

Exercises for Section 6.5

Simplify the given compositions.
1. tan

°

sin°1(x)
¢

= 2. tan
°

cos°1(x)
¢

= 3. tan
°

tan°1(x)
¢

=

4. sin
°

cos°1(x)
¢

= 5. sin
°

sec°1(x)
¢

= 6. sin
°

sin°1(x)
¢

=

7. cos
°

sin°1(x)
¢

= 8. cos
°

tan°1(x)
¢

= 9. cos
°

sec°1(x)
¢

=

10. sec
°

sin°1(x)
¢

= 11. sec
°

cos°1(x)
¢

= 12. sec
°

tan°1(x)
¢

=
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6.6 Exercise Solutions for Chapter 6
Solutions for Section 6.1
1. sin°1 (°1)=°º

2 3. sin°1
≥

°
p

2
2

¥

=°º
4

5. sin°1 (1)= º
2 7. sin°1

≥p
2

2

¥

= º
4

Exercises for Section 6.3
1. cos°1 ° 1

2
¢

= º
3 3. cos°1

≥

°
p

2
2

¥

= 3º
4

5. tan°1 (0)= 0 7. tan°1 °

p
3
¢

= º
6

9. tan°1 (°1)=°º
4 11. sec°1 (2)= º

3

13. sec°1 °

°
p

2
¢

=°º
4 15. sec°1

≥

2
p

3
3

¥

= sec°1
≥

2p
3

¥

= º
6

17. sin°1 °

sin(5º)
¢

= sin°1(0)= 0 19. tan°1 °

tan
° 5º

4
¢¢

= tan°1(1)= º
4

21. sec°1 °

sec
° 5º

4
¢¢

= sec°1(
p

2)= º
4 23. cos°1 °

cos(8º)
¢

= cos°1(1)= 0

25. Solve the equation tan2(x)= 1
3 .

Taking square roots, this is

tan(x)=± 1
p

3
.

We can find all solutions that are
in

£

°º
2 , º2

§

by taking tan°1 of this:

x = tan°1
µ

± 1
p

3

∂

.

All solutions are: x = tan°1
µ

± 1
p

3

∂

+kº

1/
p

3

°1/
p

3

27. Find all solutions of 5xsin(x) = x that
are in the interval [°º,º].

Clearly one solution is x = 0. Next
suppose x 6= 0 and divide both sides
of the equation by 5x to get sin(x) = 1

5 ,
so x = sin°1 ° 1

5
¢

is a solution in
£

°º
2 , º2

§

,
which is the range of sin°1. There is
another solution in [°º,º], which is
x = º° sin°1 ° 1

5
¢

. (See the diagram be-
low.) Thus we have three solutions,
0, sin°1 ° 1

5
¢

and º°sin°1 ° 1
5
¢

.

sin°1 ° 1
5
¢

º°sin°1 ° 1
5
¢ 1/5

31. Explain why sec°1(x)= cos°1
µ

1
x

∂

.

Think of our standard picture for sec°1(x), drawn below, left. From this triangle,
notice that cos

°

sec°1(x)
¢

= ADH
HYP = 1

x . In other words, sec°1(x) is the angle 0∑ µ ∑º

for which cos(µ)= 1
x . Thus means sec°1(x)= µ = cos°1 ° 1

x
¢

x

1

x
sec°1(x)

x

°x

sin°1(x)

sin°1(°x)

33. Explain why sin°1(x)+sin°1(°x)= 0 for all x in the domain of sin°1.
From the diagram for sin°1(x) (above, right), note that sin°1(°x)=°sin°1(x).
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Exercises for Section 6.5.
1. tan

°

sin°1(x)
¢

= OPP
ADJ = x

p
1°x2

1

1

x
sin°1(x)

3. tan
°

tan°1(x)
¢

= OPP
ADJ = x

x

1
tan°1(x)

5. sin
°

sec°1(x)
¢

= OPP
HYP =

p
x2 °1

x

x

1

x
sec°1(x)

7. cos
°

sin°1(x)
¢

= ADJ
HYP =

p

1° x2

1

1

x
sin°1(x)

9. cos
°

sec°1(x)
¢

= ADJ
HYP = 1

x

x

1

x
sec°1(x)

11. sec
°

cos°1(x)
¢

= HYP
ADJ = 1

x

1

x

x
cos°1(x)


