
CHAPTER 45

Working with Calculus

This final chapter emphasizes two things. First, our present collection
of integration formulas and techniques are remarkably limited; sec-

tion 45.1 introduces a few additional minor methods, but much more will
come in Calculus II. Second, the limit definitions of the derivative and defi-
nite integral are actually quite significant, and deserve to be remembered
and internalized. This point is illustrated in Section 45.3, which applies
calculus to the problem of finding the average value of a function.

45.1 What to Do when Substitution Fails
In any textbook, the exercises in the section on substitution can all be done
with substitution. This can lend the erroneous impression that substitution
is the ultimate integration technique. In reality, substitution has severe
limitations. For it to work, the integral must have form

Z
f
°
g(x)

¢
g0(x)dx

(or can be put into this form), so that a substitution u = g(x) converts it toZ
f (u)du. In addition we must be able to do

Z
f (u)du. If at least one of

these conditions is not met, substitution will not work. Here is a sampling
of just a few integrals for which substitution does not apply:

Z
cos(x2) x2 dx

Z
cos2(x)dx

Z
ln(x)dx

Z
sec(x)dx

Integrals such as these will have to wait until Calculus II. (Though tech-
nically, you can write a formula for each of these now. For example, the
fundamental theorem of calculus (part 1) yields

Z
cos(x2) x2 dx =

Zx

0
cos(t2) t2 dt + C,

so the integral
R

cos(x2) x2 dx does exist. But we’d like an answer that doesn’t
have an integral in it. That is what has to wait for Calculus II.)

But there are several specialized techniques that can be applied in
conjunction with our present setting of Calculus I. We discuss them now.
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Sometimes certain properties of a function can assist in evaluating
certain integrals of it. Such is the case for even and odd functions.

Recall that a function f is even
if f (°x)= f (x) for all x in its domain.
A typical even function is shown on
the right. Any two opposite input
values x and °x have equal output
f (°x) = f (x), so even functions are
symmetric about the y-axis.

x°x

f (x)f (°x)

For example, f (x)= x2 is even because f (°x)= (°x)2 = x2 = f (x). Also cos(x)
is even because of the identity cos(°x)= cos(x). Other even functions include
f (x)= x4 + x2 +1 and g(x)= x2 +cos(x).

Symmetry yields the following
fact about even functions.
Fact 45.1 If f is an even function,
continuous on [°a,a], then

Za

°a
f (x)dx = 2

Za

0
f (x)dx

a°a

f (a)f (°a)

Though sometimes helpful, this is not the most useful fact. After all, if
are trying to find

Ra
°a f (x)dx, then 2

Ra
0 f (x)dx is not likely to be any easier.

But the corresponding fact for odd functions gives a definitive answer.

A function is odd if f (°x)=° f (x)
for all x in its domain. A typical odd
function is shown on the right. Any
two opposite input values x and °x
have opposite outputs f (x) and ° f (x),
so odd functions are symmetric with
respect to the origin.

x
°x

f (x)

f (°x)

Examples of odd functions are f (x)= x3, f (x)= x5+x3+4x and f (x)= sin(x).

Symmetry yields the following
fact about odd functions.

Fact 45.2 If f is an odd function,
continuous on [°a,a], then

Za

°a
f (x)dx = 0

a
°a

f (a)

f (°a)
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Example 45.1 Find
Zº

°º
x3 sin

°
x2¢

dx.

Solution The integrand x3 sin
°
x2¢

is not one whose antiderivativea we
can compute with any of our integral formulas. Therefore the fundamental
theorem of calculus is of no use here.

Notice however, that the integrand f (x)= x3 sin
°
x2¢

is odd because

f (°x)= (°x)3 sin
°
(°x)2¢

=°x3 sin
°
x2¢

=° f (x).

Therefore Fact 45.2 gives an answer of
Zº

°º
x3 sin

°
x2¢

dx = 0.

In order for Fact 45.2 to work, the integrand must be odd and the
two limits of integration must be negatives of each other. We are can’t
compute, for example,

R2º
°º x3 sin

°
x2¢

dx. So Fact 45.2 is of limited utility. It
is a little-used tool that is nonetheless perfect for just the right job.

Another minor tool in our integration toolbox is the use of trig identities.
To illustrate this, consider the integrals

R
sin2(x)dx and

R
cos2(x)dx. We don’t

have integration formulas for these, and substitution doesn’t apply. The
issue is the powers of 2; if they were not there the integrals would be easy.
But these powers of 2 can be eliminated with the following trig identities

sin2(x)= 1°cos(2x)
2

cos2(x)= 1+cos(2x)
2

(These are identities (3.17) and (3.16) from page 46.)

Example 45.2 Find
Z

sin2(x)dx.

Solution
Z

sin2(x)dx =
Zµ

1°cos(2x)
2

∂
dx = 1

2

Z°
1°cos(2x)

¢
dx

1
2

µ
x+ 1

2
cos(2x)

∂
+C = 1

2
x+ 1

4
cos(2x)+C.

To repeat, the methods (odd functions and identities) in this section are
minor. For the purposes of Calculus I, your attention should be focused
mostly on the standard integration formulas, including substitution. To
underscore this, the integration exercises for this chapter are a cumulative
mix. For each one, decide which technique applies and execute it. This kind
of critical analysis is an important test-taking skill. (More broadly, it is a
crucial life skill!)
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45.2 Why Definitions Are Important
The two major concepts in calculus were defined by limits. First, the deriva-
tive of a function f was defined as

f 0(x) = lim
h!0

f (x+h)° f (x)
h

.

But once we developed our derivative rules we rarely had occasion to use
the limit again. Likewise the definite integral of f , over [a,b] is

Zb

a
f (x) dx = lim

n!1

nX

k=1
f (xk)¢x,

though we almost never evaluated this limit directly. There was no need to
do so once we had the fundamental theorem of calculus.

You can legitimately ask why the limits are necessary. One reason is
that the limits give meaning to derivatives and integrals. The limit for f 0(x)
is the formula for the slope of the tangent to y= f (x) at

°
x, f (x)

¢
, so the limit

gives the derivative its slope interpretation. And the limit for
Rb

a f (x)dx is
the formula for area, so it gives the integral its area interpretations.

But here is a more significant reason that the limits are important: In
modeling a real-world problem you may find that the solution takes the
form of one of the above limits. When this happens, calculus can be applied
to the problem.

This happened in Chapter 26 when we examined motion on a line. We
sought a formula for velocity, and our model led to v(t)= lim

h!0
f (x+h)° f (x)

h , where
f is the object’s position. Once this limit formula for the derivative came
into the picture, we saw that velocity is f 0(t), and we could then use calculus
(derivative rules, etc.) in motion problems.

Likewise, if you continue studying (and using) calculus and its applica-
tions, you will encounter situations in which the model of a problem leads
to a limit of the form lim

n!1
Pn

k=1 f (xk)¢x. When this happens, you’ll know that
this is a definite integral, and calculus can be applied.

So the limits are a vital bridge between applications and calculus.
We will conclude with just one more instance of this, though you will

see further instances in Calculus II. Our final section takes up the problem
of finding the average value of a function on an interval. In modeling the
problem, we will discover that the answer involves the limit lim

n!1
Pn

k=1 f (xk)¢x,
which is then replaced by

Rb
a f (x)dx. At this point the problem is squarely

within the domain and scope of calculus.
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45.3 Average Value of a Function
Consider the problem of finding the average temperature on a certain day.
You would add up all the temperatures at each instant of the day, and then
divide by the number of instants in the day. There are infinitely many
instants in a day, so this quotient would 1

1 .
That may sound paradoxical, but integration makes sense of it. This

section explains how.
In general we are concerned with finding the average value of a function

f (x) on an interval [a,b], like the one shown below.

a b

1

2

3

4

5

6 y= f (x)

To find the average value of f (x) on [a,b] we could begin by taking n
sample x-values x1, x2, x3, . . . , xn in the interval. To ensure an unbiased
sample, make them evenly spaced a distance of ¢x = b°a

n apart.

a b

1

2

3

4

5

6 y= f (x)

x1 x2 x3 x4 x5 xn· · ·

¢x = b°a
n

Then the average value of f (x) on [a,b] is approximately

f (x1)+ f (x2)+ f (x3)+·· ·+ f (xn)
n

=
nX

k=1
f (xk)

1
n

= 1
b°a

nX

k=1
f (xk)

b°a
n

= 1
b°a

nX

k=1
f (xk)¢x.

So the average value of f (x) on [a,b] is approximately 1
b°a

nX

k=1
f (xk)¢x. Notice

the Riemann sum here. A definite integral is beginning to emerge.
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But A = 1
b°a

nP
k=1

f (xk)¢x is only approximates of the average value of f (x)

on [a,b]. For all we know, our sample points may have hit the function at
low points, as shown below. This would skew A away from the true average.

a b

1

2

3

4

5

6 y= f (x)

x1 x2 x3 x4 x5 xn· · ·

¢x = b°a
n

The obvious way to overcome this problem is to increase the number of
sample points. To get the average value exactly, let the number n of sample
points approach infinity. Then the average value is exactly

lim
n!1

1
b°a

nX

k=1
f (xk)¢x = 1

b°a

√

lim
n!1

nX

k=1
f (xk)¢x

!

= 1
b°a

Zb

a
f (x)dx.

This is our formula for average value.

Fact 45.3 Average Value of a Function

The average value of f (x) on the interval [a,b] is 1
b°a

Zb

a
f (x)dx.

(We assume f is continuous on [a,b], so that the integral exists.)

Example 45.3 Find the average value of px on the interval [1,4].

Solution The average is 1
4°1

Z4

1

p
x dx = 1

3

∑
2
3
p

x3
∏4

1
= 1

3

µ
2
3
p

4
3 ° 2

3
p

1
3
∂
= 14

9
.

The function and interval are shown
on the right. Notice that our answer
of 14/9 = 1.5 for the average value
of px on [1,5] is entirely reasonable.
The values of p

x above and below
14/9 appear to balance out.

1 4

1

2
y=p

x

14
9
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Exercises for Chapter 45
In exercises 1–12, use any applicable technique to find the definite integral.
(These problems are cumulative. A variety of techniques may apply.)
1.

Rº
°º

°
x+ x7 cos(x)

¢
dx 2.

R1
°1

°
ecos(x) 3px

¢
dx

3.
R1
°1(2x°1)ex2°x dx 4.

Rº/4
°º/4 tan

°
x3¢

dx

5.
R1
°1 4x3 ex4°x2

dx 6.
Rº/4
°º/4 xtan

°
x2¢

dx

7.
Z1

°1

x2 +3
x3 + x

dx 8.
Z1

°1

t
p

t4 +1
dt

9.
Rº
°º cos2(x) dx 10.

Rº
°º cos2 (5x) dx

11.
R5
°5 sin

°
x3 + x

¢
dx 12.

Rº
°º sin2(x) dx

In exercises 13–22, find the average value of the function on the given interval.
13. sin(x) on [0,º] and on [0,2º] 14. 1/x on [1,5]

15. sin
°
x7¢

on [°2º,2º] is 16. xsin
°
x8¢

on [°1,1]

17. sec(x)tan(x) on [°º/4,0] 18. sec2(x) on [°º/4,0]

19. x2 on [0,9] 20. 1
1+x2 on [0,1]

21. The function below, on [0,6].

°1 1 2 3 4 5 6

1

2

3

x

y

y= f (x)

22. The function below, on [°3,4].

°4 °3 °2 °1 1 2 3 4 5

1

2

x

y
y= f (x)

23. Find
R5
°5

°
3x5 + x

¢
dx two ways: First, use FTC Part 2. Then use Fact 45.2.

24. Find the equation of the tangent line to the graph of f (x)=
Zx

°2

t3
p

t2 +5
dt at the

point (2, f (2)).

25. A kiln has a temperature of 70+ 3t2 degrees F. at time t. Find the average
temperature of the kiln between times 0 and 2.
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Exercise Solutions for Chapter 45
1. The integrand f (x)= x+x7 cos(x) is odd, as f (°x)=°x+(°x)7 cos(°x)=°x°x7 cos(x)=

°
°
x+x7 cos(x)

¢
=° f (x). Therefore

Rº
°º

°
x+ x7 cos(x)

¢
dx = 0 by Fact 45.2.

3.
R1
°1(2x°1)ex2°x dx (The integrand is not odd.) Let u = x2 ° x, so du = (2x°1)dx.

R1
°1(2x°1)ex2°x dx =

R1
°1 ex2°x(2x°1)dx =

R12°1
(°1)2°(°1) eu du =

R0
1 eu du = e0 ° e1 = 1° e

5.
R1
°1 4x3 ex4°x2

dx Subsituting u = x4 ° x2 does not give a match for du, but the
integrand f (x) = 4x3 ex4°x2 is odd: f (°x) = 4(°x)3 e(°x)4°(°x)2 = °4x3 ex4°x2 = ° f (x).
Therefore

R1
°1 4x3 ex4°x2

dx = 0.

7.
Z1

°1

x2 +3
x3 + x

dx The integrand f (x)= x2 +3
x3 + x

is odd, as f (°x)= (°x)2 +3
(°x)3 + (°x)

= x2 +3
°x3 ° x

=° x2 +3
x3 + x

=° f (x). Therefore
Z1

°1

x2 +3
x3 + x

dx = 0

9.
Rº
°º cos2(x)dx The integrand is not odd, and substitution fails. We will use the

identity cos2(x)=
°
1+cos(2x)

¢
/2.

Zº

°º
cos2(x)dx =

Zº

°º

1+cos(2x)
2

dx = 1
2

Zº

°º
1+cos(2x)dx = 1

2

h
x+ 1

2
sin(2x)

iº
°º

dx =

1
2

µµ
º+ 1

2
sin(2º)

∂
°

µ
°º+ 1

2
sin(°2º)

∂∂
= 1

2

≥
(º+0)° (°º+0)

¥
=º.

11.
R5
°5 sin

°
x3 + x

¢
dx Notice f (x) = sin

°
x3 + x

¢
is odd, as f (°x) = sin

°
(°x)3 + (°x)

¢
=

sin(°(x3 + x))=°sin
°
x3 + x

¢
=° f (x). Thus

R5
°5 sin

°
x3 + x

¢
dx = 0.

13. Average value on [0,º] is 1
º°0

Rº
0 sin(x) dx = 1

º

h
°cos(x)

iº
0
= 1

º

≥
°cos(º)°

°
°cos(0)

¢¥
= 2

º .

Average value on [0,2º] is 1
2º°0

R2º
0 sin(x)dx= 1

2º

h
°cos(x)

i2º

0
= 1

2º

≥
°cos(2º)°

°
°cos(0)

¢¥
=0.

15. Average value of sin
°
x7¢

on [°2º,2º] is 1
º° (°º)

Z2º

°2º
sin

°
x7¢

dx = 1
2º

·0= 0.

(The integrand is odd.)

17. The average value of sec(x)tan(x) on [°º/4,0] is 1
0° (°º/4)

Z0

°º/4
sec(x)tan(x)dx =

4
º

h
sec(x)

i0

°º/4
= 4
º

°
sec(0)°sec(°º/4)

¢
= 4
º

≥
1°

p
2
¥
.

19. Average value of x2 on [0,9] is 1
9°0

Z9

0
x2 dx = 1

9

hx3

3

i9

0
= 27.

21. Find the average value of the function graphed below, on [0,6].

Answer: 1
6°0

Z6

0
f (x)dx = 1

6
· 17

2
= 17

12

°1 1 2 3 4 5 6

1

2

3

x

y

y= f (x)
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23. Find
R5
°5

°
3x5 + x

¢
dx two ways.

By FTC Part 2,
R5
°5

°
3x5 + x

¢
dx =

h
x6

2 + x2

2

i5

°5
=

≥
56

2 + 52

2

¥
°

≥
(°5)6

2 + (°5)2
2

¥
= 0.

Alternatively, notice that the integrand f (x) = 3x5 + x is odd because f (°x) =
3(°x)5 ° x =°3x5 ° x =°

°
3x5 + x

¢
=° f (x). Then by Fact 45.2,

R5
°5

°
3x5 + x

¢
dx = 0.

25. A kiln has a temperature of 70+ 3t2 degrees F. at time t. Find the average
temperature of the kiln between times 0 and 2.

1
2°0

Z2

0

°
70+3t2¢

dx = 1
2

h
70t+ t3

i2

0
= 1

2
°
70 ·2+23¢

= 74±F.


