More on the Fundamental Theorem

A lthough Part 2 of the fundamental theorem of calculus gets the greater part of our attention, Part 1 is important too, and this chapter begins with a deeper examination of it. The second part of the chapter examines a useful interpretation of Part 2.

43.1 Differentiating Integral Functions

Part 1 of the fundamental theorem of calculus states that if f is continuous on [a,b], then the function $\int_a^x f(t) dt$ is differentiable on (a,b), and

$$D_x\left[\int_a^x f(t)\,dt\right] = f(x).$$

Recall that if $f(t) \ge 0$ on [a, b], then the function $A(x) = \int_a^x f(t) dt$ gives the area of the region under the graph of y = f(t) between t = aand t = x. Part 2 of the FTC says that the derivative of this area function is f(x). That is, *area under the graph of f is an antiderivative of f*.

This section looks at further examples of Part 1 of the FTC. Part 1 is almost deceptively simple. It says $D_x \left[\int_a^x f(t) dt \right] = f(x)$, that is, the derivative of $\int_a^x f(t) dt$ is just the integrand f(t) with the variable *t* replaced with *x*.

Example 43.1 Find the derivative of $\int_0^x t \cos(t) dt$. **Solution** By FTC Part 1, the answer is $D_x \left[\int_0^x t \cos(t) dt \right] = \boxed{x \cos(x)}$. **Example 43.2** $D_x \left[\int_0^x \frac{\ln(1+t^6)\cos(t)}{t^{11}+e^t} dt \right] = \boxed{\frac{\ln(1+x^6)\cos(x)}{x^{11}+e^x}}$.

In the statement of FTC Part 1, the upper limit of integration is the variable *x*. When this is not the case, then you may have to switch the limits of integration (thus negating the integral) before applying FTC Part 1:

Example 43.3
$$D_x \left[\int_x^2 \frac{t \sin(t)}{e^t} dt \right] = D_x \left[-\int_2^x \frac{t \sin(t)}{e^t} dt \right] = \left[-\frac{x \sin(x)}{e^x} \right]$$

Example 43.4 Find $D_x \left[\int_0^{x^2+x} t \cos(t) dt \right]$.
Solution Notice $y = \int_0^{x^2+x} t \cos(t) dt$ is a composition:
$$\begin{cases} y = \int_0^u t \cos(t) dt \\ u = x^2 + x. \end{cases}$$
Therefore we need the chain rule to find its derivative. By the chain rule,
 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$. By the FTC Part 2, $\frac{dy}{du} = \frac{d}{du} \left[\int_0^u t \cos(t) dt \right] = u \cos(u)$. Therefore
 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = u \cos(u)(2x+1) = \left[(x^2+x)\cos(x^2+x)(2x+1) \right]$

43.2 The Definite Integral as Net Change

We now briefly explore yet another interpretation of the definite integral. The FTC says that if *F* is an antiderivative of *f* (that is, if F' = f), then

$$\int_a^b f(x) dx = F(b) - F(a).$$

Because F' = f, this can be written as

$$\int_a^b F'(x) dx = F(b) - F(a)$$

On the left, the derivative F'(x) is the rate of change of F(x). On the right, the difference F(b)-F(a) is the net change in F(x) between x = a and x = b.

$$\int_{a}^{b} \left(\begin{array}{c} \text{rate of change} \\ \text{of quantity } F(x) \end{array} \right) dx = F(b) - F(a) = \left(\begin{array}{c} \text{net change in } F(x) \\ \text{between } a \text{ and } b \end{array} \right).$$

For example, suppose r(t) is the rate of change (in liters/minute) of water pouring from a pipe at time *t*. So r(t) is the rate of change in the quantity (liters) of water that has poured out of the pipe at time *t*. The integral $\int_5^{10} r(t) dt$ is the number of liters that poured out between times 5 and 10.

For another example, suppose an object moving on a line has velocity v(t) at time t. Since v(t) is the rate of change of its position s(t), a definite integral like $\int_a^b v(t) dt = s(b) - s(a)$ is the net change in distance between times a and b. The net change in distance is *not necessarily* how far the object has traveled between times a and b, but rather how far it is at time b

from where it was at time *a*. For example, if at time *b* it has returned to where is was at time *a*, then $\int_a^b v(t) dt = s(b) - s(a) = 0$.

Exercises for Chapter 43

- **1.** Differentiate $\int_0^x \cos(t) dt$ in two ways. First, use FTC Part 1. Second, use FTC Part 2 to find the integral, and differentiate the resulting function.
- **2.** Differentiate $\int_{2}^{\infty} (t^5 + e^t + 3) dt$ in two ways. First, use FTC Part 1. Second, use FTC Part 2 to find the integral, and differentiate the resulting function.
- **3.** Differentiate $\int_{1}^{x} (\sec^2(t) + \sec(t)\tan(t)) dt$ in two ways. First, use FTC Part 1. Second, use FTC Part 2 to find the integral, and differentiate the resulting function.
- **4.** Differentiate $\int_0^x \frac{1}{\sqrt{1-t^2}} dt$ in two ways. First, use FTC Part 1. Second, use FTC Part 2 to find the integral, and differentiate the resulting function.
- 5. Differentiate $\int_0^x t^3 \cos(t) e^t dt$. Then differentiate $\int_x^0 t^3 \cos(t) e^t dt$.
- 6. Differentiate $\int_0^x \sqrt{10 + \sin(t) + \cos(t)} dt$. Then differentiate $\int_x^0 \sqrt{10 + \sin(t) + \cos(t)} dt$. 7. Differentiate: $y = \int_0^{\sqrt{x}+1} t^3 \cos(t) e^t dt$ 8. Differentiate: $f(x) = \int_1^{x^2-x+2} \cos\left(\frac{t}{t+1}\right) dt$
- **9.** Differentiate: $f(x) = \int_{\pi}^{\sin(x)} e^{t^3 + 2t} dt$ **10.** Differentiate: $f(x) = \int_{\pi}^{\sqrt{x}+1} \frac{t^2 1}{t^2 + 1} dt$

11. Differentiate:
$$f(x) = \int_{5x^2}^8 \sqrt{t^5 - 7} \, dt$$
 12. Differentiate: $f(z) = \int_{z^4 + z^2}^{10} \sqrt{\frac{t}{t^5 - 7}} \, dt$

- **13.** Differentiate: $y = \int_{x}^{x^2 3x} \sin(t^2) \sqrt[3]{t} dt$ **14.** Differentiate: $f(x) = \int_{-x}^{x} \sin(t^2 2) t^2 dt$
- **15.** Suppose $F(x) = \int_{2}^{x} \frac{t-3}{t^2+7} dt$. Find F'(x) and F''(x). Find F(2). Find where *F* attains its global minimum. Find where *F* is concave up/down. Use this information to sketch the graph of *F*.

16. Find the equation of the tangent line to the graph of $f(x) = \int_{-2}^{x} \frac{t^3}{\sqrt{t^2 + 5}} dt$ at the point (-2, f(-2)).

17. For what x is the tangent to $y = \int_2^{x^2+1} \sqrt[3]{t^2+3t+2} dt$ horizontal?

18. Suppose an object moving on a line has a velocity of $v(t) = 3t^2 - 2t + 1$ units per second at time *t* seconds. What is the difference in its positions between times t = 1 and t = 4?

- **19.** Suppose r(t) is the rate, in acres per day, of US farmland being lost to development t days after January 1, 2022. Suppose $\int_{32}^{60} r(t) dt = 3127$. What does this mean?
- **20.** Suppose f(t) is the rate, in tons per day, of trash New York City exports to North Carolina landfills *t* days after January 1, 2021. Suppose $\int_{0}^{31} r(t) dt = 375,032$. What does this mean?
- **21.** An object moving on a line has position s(t) and velocity v(t) at time *t*. The position function s(t) is graphed below. Find $\int_{1}^{5} v(t) dt$.

23. The derivative f'(x) of a function f(x) is graphed below. If f(2) = 3, what is f(-3)?

22. An object moving on a line has position s(t) and velocity v(t) at time *t*. The position function s(t) is graphed below. Find $\int_0^4 v(t) dt$.

24. The derivative f'(x) of a function f(x) is graphed below. If f(5) = 3, what is f(-2)?

Exercise Solutions for Chapter 43

1. Differentiate $\int_{0}^{x} \cos(t) dt$ in two ways. By FTC Part 1, $D_x \left[\int_0^x \cos(t) dt \right] = \cos(x)$. Using FTC Part 2, $D_x \left[\int_0^x \cos(t) dt \right] =$ $D_x \left[\left[\sin(t) \right]_0^x \right] = D_x \left[\left| \sin(x) - \sin(0) \right| \right] = D_x \left[\sin(x) \right] = \cos(x).$ **3.** Differentiate $\int_{1}^{x} (\sec^2(t) + \sec(t)\tan(t)) dt$ in two ways. By FTC Part 1, $D_x \left[\int_0^x (\sec^2(t) + \sec(t)\tan(t)) dt \right] = \sec^2(x) + \sec(x)\tan(x).$ Using FTC Part 2, $D_x \left[\int_0^x (\sec^2(t) + \sec(t)\tan(t)) dt \right] = D_x \left[[\tan(t) + \sec(t)]_0^x \right] =$ $D_x \left[(\tan(x) + \sec(x)) - (\tan(0) + \sec(0)) \right] = D_x \left[\tan(x) + \sec(x) \right] = \sec^2(x) + \sec(x)\tan(x)$ **5.** Differentiate $\int_0^x t^3 \cos(t) e^t dt$. Then differentiate $\int_x^0 t^3 \cos(t) e^t dt$. $D_x \left[\int_0^x t^3 \cos(t) e^t dt \right] = x^3 \cos(x) e^x$ $D_{x}\left[\int_{x}^{0} t^{3}\cos(t)e^{t} dt\right] = D_{x}\left[-\int_{0}^{x} t^{3}\cos(t)e^{t} dt\right] = -x^{3}\cos(x)e^{x}$ 7. Differentiate the function $f(x) = \int_0^{\sqrt{x}+1} t^3 \cos(t) e^t dt$. Write this as a composition $y = \int_0^u t^3 \cos(t) e^t dt$ and $u = \sqrt{x} + 1$. By the chain rule, $f'(x) = \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = u^2\cos(u)e^u \cdot \frac{1}{2\sqrt{x}} = \frac{(\sqrt{x}+1)^2\cos(\sqrt{x}+1)e^{\sqrt{x}+1}}{2\sqrt{x}}.$ **9.** Differentiate the function $f(x) = \int_{-}^{\sin(x)} e^{t^3 + 2t} dt$. Write this as a composition $y = \int_{\pi}^{u} e^{t^3 + 2t} dt$ and $u = \sin(x)$. By the chain rule, $f'(x) = \frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = e^{u^3 + 2u}\cos(x) = e^{\sin^3(x) + 2\sin(x)}\cos(x).$ **11.** Differentiate: $f(x) = \int_{x=2}^{8} \sqrt{t^5 - 7} dt$ First, put this into the form $f(x) = -\int_{0}^{5x^2} \sqrt{t^5 - 7} dt$, so that FTC 1 applies. Now f(x) is a composition of $y = -\int_{0}^{u} \sqrt{t^{5}-7} dt$ with $u = 5x^{2}$. By the chain rule, $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx} = -\sqrt{u^5 - 7} \ 10x = -\sqrt{(5x^2)^5 - 7} \ 10x = -\sqrt{3125x^{10} - 7} \ 10x.$ **13.** Differentiate: $y = \int_{x}^{x^2 - 3x} \sin(t^2) \sqrt[3]{t} dt$

To begin, break this up as $y = \int_{x}^{0} \sin(t^2) \sqrt[3]{t} dt + \int_{0}^{x^2 - 3x} \sin(t^2) \sqrt[3]{t} dt$, which yields $y = -\int_{0}^{x} \sin(t^2) \sqrt[3]{t} dt + \int_{0}^{x^2 - 3x} \sin(t^2) \sqrt[3]{t} dt$. Using FTC 1 and the chain rule, we get $y' = -\sin(x^2) \sqrt[3]{x} + \sin((x^2 - 3x)^2) \sqrt[3]{x^2 - 3x} (2x - 3)$.

- **15.** Suppose $F(x) = \int_2^x \frac{t-3}{t^2+7} dt$. Find F'(x) and F''(x). Find F(2). Find where F attains its global minimum. Find where F is concave up/down. Use this information to sketch the graph of F.
 - By FTC part 1, $F'(x) = \frac{x-3}{x^2+7}$. By the quotient rule, $F''(x) = \frac{1 \cdot (x^2+7) (x-3)2x}{(x^2+7)^2} = \frac{-x^2+6x+7}{(x^2+7)^2} = \frac{-(x+1)(x-7)}{(x^2+7)^2}$. Looking at the factored forms of F' and F'', we can read off the signs of these derivatives as follows.

From this we can see that *F* decreases on $(-\infty, 3)$ and increases on $(3,\infty)$. Therefore *F* has a global minimum at x = 3. Also *F* is concave up on (-1,7) and concave down on $(-\infty, -1) \cup (7,\infty)$. In addition, $F(2) = \int_2^2 \frac{t-3}{t^2+7} dt = 0$. Putting all this together, we get a sketch of the graph of *F*.

17. For what *x* is the tangent to $y = \int_{2}^{x^{2}+1} \sqrt[3]{t^{2}+3t+2} dt$ horizontal? This function is a composition $y = \int_{2}^{u} \sqrt[3]{t^{2}+3t+2} dt$ with $u = x^{2}+1$. By the chain rule, $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \sqrt[3]{u^{2}+3u+2} \cdot 2x = \sqrt[3]{(x^{2}+1)^{2}+3(x^{2}+1)+2} \cdot 2x$. This certainly equals 0 if x = 0. Can other values of *x* make the derivative zero? Because $x^{2}+1$ is positive for any *x*, it follows that $\sqrt[3]{(x^{2}+1)^{2}+3(x^{2}+1)+2} > 0$. Therefore $\frac{dy}{dx}$ is zero if and only if x = 0. **Answer** The tangent line is horizontal only at x = 0.

- **19.** Suppose r(t) is the rate, in acres per day, of US farmland being lost to development t days after January 1, 2022. Suppose $\int_{32}^{60} r(t) dt = 3127$. What does this mean? **Answer** Between the 32nd and 60th day of 2022 (i.e., in the month of February), 3127 acres of farmland were lost to development.
- **21.** An object moving on a line has position s(t) and velocity v(t) at time t. The position function s(t) is graphed below. Find $\int_1^5 v(t) dt$.

23. The derivative f'(x) of a function f(x) is graphed below. If f(2) = 3, what is f(-3)? By FTC 2, $f(2) - f(-3) = [f(x)]_{-3}^2 = \int_{-3}^2 f'(x) dx$. By area under graph, $\int_{-3}^2 f'(x) dx = 6$. So f(2) - f(-3) = 6. Hence f(-3) = f(2) - 6 = 3 - 6 = -3.