
CHAPTER 42

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus provides a link between definite
integrals and antiderivatives. (That is, between definite integrals and

indefinite integrals.)
Recall that we defined the definite integral of a function f from a to b as

Zb

a
f (x) dx = lim

n!1

nX

k=1
f (xk)¢x

(where ¢x = (b°a)/n and xk = a+k¢x). But we mostly avoided the unpleasant
chore of working out such limits. As we will see, the fundamental theorem
of calculus gives the value of this limit with an almost unbelievably simple
expression. It is simply

Zb

a
f (x) dx = F(b)°F(a),

where F(x) is an antiderivative of f (x).
This chapter’s purpose is to explain why this is true, and to give examples

of computing definite integrals this way.
Our first task in accomplishing this is a minor but necessary detail:

Recall that although its notation contains a variable, the definite integralRb
a f (x)dx is a number. It has the same value no matter what variable we

choose. Thus
Rb

a f (x)dx =
Rb

a f (w)dw =
Rb

a f (t) dt, etc. For this reason, the
variable x (or w, or t, etc.) in

Rb
a f (x)dx is called a dummy variable.

In our discussions here, we will often want to reserve the variable x for
a di�erent purpose. So we will write some of our integrals as

Rb
a f (t)dt.

As definite integrals can give area, the expression
Rb

a f (x) dx = F(b)°F(a)
mentioned above seems to suggest that the area under the graph of f (x) has
something to do with antiderivatives of f . We will first look at a motivational
example that clarifies this. This will then lead to our formulation of the
fundamental theorem of calculus. Actually, this theorem has two parts,
Part 1 and Part 2. Our example will lead to Part 1, which in turn implies
Part 2. (It is Part 2 that says

Rb
a f (x) dx = F(b)°F(a).)
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Our motivational example is this: Consider the function f (x) = x+ 2,
which is a line with slope 1 and y-intercept 2. Take a value of x and consider
the region under y= f (x) and between 0 and x. Depending on the value of x,
this region has varying widths and thus varying area.

x

A(x)

0
x

y f (x)= x+2

2

x

A(x)

0
x

y f (x)= x+2

2

x

A(x)

0
x

y f (x)= x+2

2

x

A(x)

0
x

y f (x)= x+2

2

As the area of this region depends
on x, the area is a function A(x) of x.
For a given value of x, the region can
be divided into a triangle with base x
and height x, on top of rectangle with
base x and height 2. Thus A(x) =
(triangle area)+ (rectangle area) =
1
2 x·x+2·x, or

A(x)= 1
2 x2 +2x square units. x

o
x

A(x)= 1
2 x2 +2x

0 x

y
f (x)= x+2

2

There is an interesting relationship between the function f (x)= x+2 and
the area A(x)= 1

2 x2+2x under its graph. The derivative of A(x) is f (x). Thus
the area under f (x) is an antiderivative of f (x).

Function Area under function
f (x)= x+2 A(x)= 1

2 x2 +2x

Dx

So we have just shown that
Dx

h
A(x)

i
= f (x).

And since A(x)=
Rx

0 f (t) dt, the above
can be written as

Dx

∑Zx

0
f (t)dt

∏
= f (x).

This is not a coincidence. It the
fundamental theorem of calculus.

x

A(x)=
Zx

0
f (t)dt

0 t

y y= f (t)
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42.1 The Fundamental Theorem of Calculus, Part 1
The example on the previous page is an illustration of Part 1 of the Funda-
mental Theorem of Calculus.

The general picture is this: Suppose a function f is continuous on an
interval [a,b]. Then for any x in [a,b] the value of the integral

Rx
a f (t) dt is

a number that depends on x. Therefore we have a function A(x)=
Rx

a f (t) dt.
(We use t as a dummy variable here because x appears in a di�erent context,
as the upper limit of integration.)

x

y= f (t)

A(x)=
Zx

a
f (t)dt

a b
t

y

For example, A(a)=
Ra

a f (t) dt = 0. If f (t) happens to be positive on [a,b],
then A(x) =

Rx
a f (t) dt is the area under y = f (t) and between t = a and t = x.

However, f (t) need not be positive, and in such a case we can regard A(x)=Rx
a f (t) dt as Aup ° Adown between a and x.

Part 1 of the fundamental theorem of calculus simply gives the derivative
of this function A(x). It states that A0(x)= f (x).

Theorem 42.1 (The Fundamental Theorem of Calculus, Part 1)

Suppose a function f (x) is continuous on the interval [a,b].
Then the function A(x)=

Rx
a f (t)dt is di�erentiable on (a,b).

Its derivative is
Dx

∑Zx

a
f (t)dt

∏
= f (x).

Example 42.1 Find the derivative of the function A(x)=
Rx
º cos(t)+2 dt.

The function A(x) =
Rx
º cos(t)+2 dt

gives the area under the graph of
f (t) = cos(t) + 2, between t = º and
t = x. The fundamental theorem of
calculus part 1 says is derivative is
Dx

£Rx
º f (t)dt

§
= f (x), that is,

Dx

∑Zx

º
cos(t)+2dt

∏
= cos(x)+2.

t

y

y= cos(t)+2

º x
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In this example A(x) is area under the graph of f (x) = cos(x)+2, and
A0(x)= f (x)= cos(x)+2. This illustrates a general principle. The derivative
of area under f (x) is f (x). That is, area under f is an antiderivative of f

We will prove part 1 of the fundamental theorem of calculus in Sec-
tion 42.3. For now we investigate one of its most important consequences –
the fundamental theorem of calculus, part 2.

42.2 The Fundamental Theorem of Calculus, Part 2
Part 2 of fundamental theorem of calculus is incredibly useful, as it will
give a simple formula for

Rb
a f (x) dx. It also follows quickly from Part 1, as

follows: Suppose a function f (x) is continuous on a closed interval [a,b].
Part 1 of the fundamental theorem says

Dx

∑Zx

a
f (t)dt

∏
= f (x). (§)

This means that the function
Rx

a f (t)dt is an antiderivative of f (x). Let F(x) be
any antiderivative of f (x). Then F(x) and

Rx
a f (t)dt are both antiderivatives

of f (x), so they di�er by a constant C:
Zx

a
f (t) dt = F(x)+C.

We can actually find C by inserting x = a:

0 =
Za

a
f (t) dt = F(a)+C.

Therefore C =°F(a), and Equation (§) becomes
Zx

a
f (t) dt = F(x)°F(a).

Inserting x = b into this, we get
Zb

a
f (t) dt = F(b)°F(a).

Now the x is gone, so the dummy variable t can be replaced with x:
Zb

a
f (x) dx = F(b)°F(a).
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This is our formula for
Rb

a f (x) dx, and in fact it is part 2 of the fundamental
theorem of calculus.

Theorem 42.2 (Fundamental Theorem of Calculus, Part 2)
If f is continuous on [a,b], and F is any antiderivative of f , then

Zb

a
f (x) dx = F(b)°F(a)

Example 42.2 Find
Z2

0
x2 dx.

Solution Part 2 of the fundamental theorem of calculus says this equals
F(2)°F(0), where F is any antiderivative of f (x)= x2. The antiderivatives
of x2 are F(x)=

R
x2 dx = 1

3 x3 +C. We are allowed to use any antiderivative
of x2, so we may as well put C = 0, so F(x)= 1

3 x3. Then
Z2

0
x2 dx = F(2)°F(0) = 1

3
23 ° 1

3
03 = 8

3
.

Comment: If we had used F(x)= 1
3 x3 +C in this computation, then the C’s

would cancel out in F(2)°F(0). So in using the fundamental theorem of
calculus, we can simplify our work by always choosing C = 0.

Compare Example 42.2 with Example 2.2, where we used a limit of
Riemann sums to find the area under f (x)= x2 between x = 0 and x = 2. The
answer came after two pages of work: 8/3 square units. The fundamental
theorem of calculus gave this answer instantly in Example 42.2.

Example 42.3 Find
Z4

1

p
x+2 dx.

Solution Part 2 of the fundamental theorem of calculus says this equals
F(2)°F(0), where F(x)=

Rp
x+2 dx = 2

3
p

x3 +2x+C. Using C = 0,
Z4

1

p
x+2 dx = F(4)°F(1) =

µ
2
3
p

4
3 +2·4

∂
°

µ
2
3
p

1
3 +2·1

∂
= 32

3
.

Example 42.4 Find
Z2º

º
cos(x) dx.

Solution As
R

cos(x)dx = sin(x)+C,
the fundamental theorem givesR2º
º cos(x)dx = sin(º)°sin(2º) = 0°0=0.

This makes sense because the areas
above and below the x-axis cancel.

y= cos(x)
º

2º
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Part 2 of the fundamental of calculus is used so frequently that we
usually just call it the fundamental theorem of calculus, or FTC.

The di�erence F(b)°F(a) that appears in the FTC is so prevalent that
we have a special abbreviation for it:

F(b)°F(a)=
£
F(x)

§b
a.

For example,
£
cos(x)

§º
0 = cos(º)°cos(0)=°1°1=°2. In other texts you may

see
£
F(x)

§b
a written as F(x)

ØØØ
b

a
or F(b)°F(a) = F(x)

ib

a
. With this new notation

we can state the FTC as follows:

Fundamental Theorem of Calculus, Part 2 (FTC):
Zb

a
f (x) dx =

h
F(x)

ib

a
(where F is an antiderivative of f ).

Example 42.5
Z1

°1

°
x5 ° x+1

¢
dx =

hx6

6
° x2

2
+ x

i1

°1

=
µ

16

6
° 12

2
+1

∂
°

µ
(°1)6

6
° (°1)2

2
°1

∂
= 2.

Example 42.6
Z1

0

1
1+ x2 dx =

h
tan°1(x)

i1

0
= tan°1(1)° tan°1(0)= º

4
°0= º

4
.

Example 42.7
Z5

1

1
x

dx =
h

ln(x)
i5

1
= ln(5)° ln(1)= ln(5)°0= ln(5).

Example 42.8 Find the area of the region under the graph of sin(x), above
the x-axis and between x = 0 and x =º.

Solution Because sin(x) ∏ 0 on
[0,º], the area in question is

Zº

0
sin(x)dx =

h
°cos(x)

iº
0

= °cos(º)° (°cos(0))

= ° (°1)° (°1)

= 2 square units.

y= sin(x)

0 º 2º

Now test your understanding by working some exercises.
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42.3 Proof of the Fundamental Theorem
[I’ll add a proof here soon. For now, see the explanation in Lecture 43.]

y= f (t)

A(x)

a x t

y

x+h

A(x+h)° A(x)

Mm

Exercises for Chapter 42

1.
Z2

0

°
3x°4x3¢

dx = 2.
Zº/2

°º/2
cos(x) dx =

3.
Z9

0

p
x dx = 4.

Z1

°1
(x2 + x+1) dx =

5.
Ze2

1

1
x

dx = 6.
Z2

1

µ
1+ 1

x2

∂
dx =

7.
Z8

°8
5 3px dx = 8.

Z8

0
5 3px dx =

9.
Zº/3

0
sec2(x) dx = 10.

Z2

1
x
µ
x+ 1

x

∂
dx =

11.
Zº/3

0
sec(x)tan(x)dx = 12.

Zp
2/2

0

1
p

1° x2
dx =

13.
Z1

°1

1
p

1° x2
dx = 14.

Z1

°1

1
1+ x2 dx =

15.
Z4

1

5x2 +1
x2 dx = 16.

Z3

1

x5 °8x
x3 dx =

17.
Z4

1
x°

1
2 dx = 18.

Z3º/4

º/4
cot xcsc x dx =

19. Find the area under the graph of y=p
x between x = 4 and x = 9.

20. Find the area under the graph of y= 3px2 between x =°1 and x = 8.

21. Find the area under the graph of y= cos(x) between x = 0 and x =º/3.

22. Find the area under the graph of y= 1/x between x = 1/e and x = e.

23. Find the area under the graph of y= sec2(x) between x = 0 and x =º/4.
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24. Find the area of the shaded region indicated below.
y

x

y= 2+cos(x)

Exercise Solutions for Chapter 42

1.
Z2

0

°
3x°4x3¢

dx =
∑

3
2

x2 ° x4
∏2

0
=

µ
3
2

22 °24
∂
°

µ
3
2

02 °04
∂
=°10

3.
Z9

0

p
x dx =

Z9

0
x1/2 dx =

∑
1

1/2+1
x1/2+1

∏9

0
=

∑
2
3

x3/2
∏9

0
=

∑
2
3
p

x3
∏9

0
= 2

3
p

9
3 = 54

3

5.
Ze2

1

1
x

dx =
h

ln |x|
ie2

1
= ln |e2|° ln |1| = 2°0= 2

7.
Z8

°8
5 3px dx =

Z8

°8
5x1/3 dx =

∑
5

1
1/3+1

x1/3+1
∏8

°8
=

∑
15
4

x4/3
∏8

°8
=

∑
15
4

3px4
∏8

°8

= 15
4

3p8
4 ° 15

4
3p°8

4 = 15
4

(2)4 ° 15
4

(°2)4 = 0

9.
Zº/3

0
sec2(x) dx =

h
tan(x)

iº/3

0
= tan(º/3)° tan(0)=

p
3°0=

p
3

11.
Zº/3

0
sec(x)tan(x)dx =

h
sec(x)

iº/3

0
= sec(º/3)°sec(0)= 2°1= 1

13.
Z1

°1

1
p

1° x2
dx =

h
sin°1(x)

i1

°1
= sin°1(1)°sin°1(°1)= º

2
°

≥
°º

2

¥
=º

15.
Z4

1

5x2+1
x2 dx =

Z4

1

µ
5x2

x2 + 1
x2

∂
dx =

Z4

1

µ
5+ 1

x2

∂
dx =

h
5x° 1

x

i4

1
=

µ
20°1

4

∂
°(5°1)= 63

4

17.
Z4

1
x°

1
2 dx =

h 1
°1/2+1

x
1
2
i4

1
=

h
2
p

x
i4

1
= 2

p
4°2

p
1= 2

19. Find the area under the graph of y=p
x between x = 4 and x = 9.

Z9

4

p
x dx =

Z9

0
x1/2 dx =

∑
1

1/2+1
x1/2+1

∏9

4
=

∑
2
3

x3/2
∏9

4
=

∑
2
3
p

x3
∏9

4
= 2

3
p

9
3 ° 2

3
p

4
3 = 38

3
square units

21. Find the area under the graph of y= cos(x) between x = 0 and x = º
3 .

Zº/3

0
cos(x) dx =

h
sin(x)

iº/3

0
= sin(º/3)°sin(0)=

p
3

2
°0=

p
3

2
square units

23. Find the area under the graph of y= sec2(x) between x = 0 and x =º/4.
Zº/4

0
sec2(x) dx =

h
tan(x)

iº/4

0
= tan(º/4)° tan(0)= 1°0= 1 square unit.


