
CHAPTER 41

Definite Integrals

This chapter introduces a major concept in calculus, the definite integral.
In terms of significance, it is as important a concept as the derivative.

The previous chapter’s area formula is a gateway to this major concept.
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Recall that if f (x)> 0 on the interval [a,b], then the area of the region
(shown above) over [a,b] but below the graph of y= f (x) is given by the limit

Area = A = lim
n!1

nX

k=1
f (xk)¢x,

where for any n, ¢x = b°a
n and xk = a+k¢x.

This area formula is a limit of the special sum of form
nX

k=1
f (xk)¢x,

which we interpreted as a sum of areas of rectangles. In general, a sum
having this form is called a Riemann sum.

We often think of a Riemann sum as being the sum of the areas of n
rectangles, which (for large n) approximates the area A under f (x). However,
Riemann sums do not necessarily approximate just area. In fact they can
be negative. If f (x) is ever negative on [a,b], then some (or all) of the terms
f (xk)¢x in the Riemann sum can be negative. (Think of them as “rectangles

with negative height.”) See Figure 41.1. Note that any rectangles under the
x-axis give a negative contribution to the sum

nP
k=1

f (xk)¢x.
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Figure 41.1. In a Riemann sum
nP

k=1
f (xk)¢x, any rectangles below the x-axis

give negative contributions to the sum. So it is possible for a Riemann sum
to be negative, or zero.

Now we are ready for our big definition. Given a function f (x) defined
on an interval [a,b], its definite integral is a certain number, which we will
denote as

Rb
a f (x)dx. This number is given by our area formula.

Definition 41.1 Given a function f (x) defined on a closed interval [a,b],
the definite integral of f (x) from a to b is the number, denoted asRb

a f (x)dx (read “the integral from a to b f (x) dx”), and defined as
Zb

a
f (x)dx = lim

n!1

nX

k=1
f (xk)¢x

(provided the limits exists), where for any n, ¢x = b°a
n and xk = a+k¢a.

If the limit does not exist, then we say the definite integral does not exist.

Since we have used our area formula in the definition of the definite
integral, it follows that if f (x) ∏ 0 on [a,b], the definite integral

Rb
a f (x)dx

equals the area over [a,b] and under the graph of y= f (x).
In Example 40.2 we computed the area over [0,2] and under y= f (x)= x2,

and found that this region contains 8/3 square units of area. Therefore
Z2

0
x2 dx = 8

3
.

Take note: A definite integral is a number, for example,
R2

0 x2 dx = 8
3 .

An indefinite integral is a set of functions, for example,
R

x2 dx = x3

3 +C.
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There is a good reason why the notations these two things are so similar.
The Fundamental Theorem of Calculus (next chapter) will give a formula for
the definite integral

Rb
a f (x)dx in terms of the indefinite integral

R
f (x)dx.

For now, in the definition
Zb

a
f (x) dx = lim

n!1

nX

k=1
f (xk)¢x,

regard the
Rb

a on the left as a a streamlined version of lim
n!1

nP
k=1

on the right,
whereas the f (x) corresponds to f (xk), and the dx to ¢x.

We will accept on faith the following theorem from advanced calculus,
which assures us that the definite integral exists provided f is continuous.

Theorem 41.1 If f (x) is continuous on [a,b], then
Zb

a
f (x) dx exists.

This means that the limit lim
n!1

Pn
k=1 f (xk)¢x in the definition of

Rb
a f (x) dx

is guaranteed to exist as long as f is continuous on [a,b]. However, even
though the limit exists, it can be quite di�cult to evaluate it directly.

For instance, consider the definite integral of f (x)= x2+cos(x) over [a,b]=
[°º,º]. Following Definition 41.1, ¢x = º°(°º)

n = 2º
n and xk =°º+k¢x =°º+2ºk

n .
So

Zº

°º
x2+cos(x) dx = lim

n!1

nX

k=1

°
x2

k+cos(xk)
¢
¢x

= lim
n!1

nX

k=1

µµ
°º+ 2ºk

n

∂2
+cos

µ
°º+ 2ºk

n

∂∂
2º
n

.

This is not an easy limit! But by Theorem 41.1, it does exist. (And the
fundamental theorem of calculus, in Chapter 42, will give a quick answer.)

Some vocabulary: In the expression
Rb

a f (x) dx, the symbol
R

is called the
integral sign, and the function f (x) that is being integrated is called the
integrand. The numbers a and b are called the limits of integration.

Zb

a
f (x) dxintegral sign

lower limit of integration

upper limit of integration
integrand

di�erential
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41.1 Properties of Definite Integrals
Definite integrals have many properties, and we list eight of them here.
The first property involves area.

Property 1 (The Area Property) Because we defined definite integrals
with our area formula, it follows that if f (x) ∏ 0 on [a,b], then

Rb
a f (x) dx

equals the area of the region over [a,b] and below the graph of y= f (x).

x

y

a b

y= f (x)

A
A =

Zb

a
f (x) dx

More generally, if f (x) is not positive on all of [a,b] then any rectangles
in the Riemann sum lim

n!1
Pn

k=1 f (xk)¢x that are below the x-axis give a
negative contribution to area. Thus

Rb
a f (x) dx equals the area contained

above the x-axis, minus any area below the x-axis. We express this as
Zb

a
f (x)dx = Aup ° Adown,

where Aup is the area above the
x-axis and Adown is the area below.

a
b

Aup

Adown

Example 41.1 Find
Z3

°3

p
9° x2 dx.

The graph of y=
p

9° x2 =
p

32 ° x2 is
the upper half of the circle of radius
3 centered at the origin. The area
under the curve is thus half the area
of a circle of radius 3, or 1

2º32 = 9º
2 .

Thus
Z3

°3

p
9° x2 dx = 9º

2
.

3°3

y=
p

32 ° x2

Example 41.2 Find
R2º

0 sin(x) dx.

Here Aup and Adown are equal, so
Z2º

0
sin(x)dx = Aup° Adown = 0.

x

y

0 º

y= sin(x)
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Example 41.3 Find
Z2

°1
(1° x) dx.

The graph of y= 1° x is a straight line with slope °1 and y-intercept 1. The
region contained between °1 and 2 consists of two triangles, shown below.
The area of a triangle is is 1

2 bh, so
Z2

°1
(1° x)dx = Aup ° Adown

= 1
2

2·2° 1
2

1·1

= 3/2.

1 2

°1
x

y

y= 1° x

The above examples were easy because the regions were recognizable
shapes, with familiar area formulas. This is of course not aways the case.

Let’s continue with our list of definite integral properties. The next
property is obvious because the area between x = a and x = a has to be zero.

Property 2
Za

a
f (x) dx = 0

Next, a property concerning interchanging the limits of integration.

Property 3
Zb

a
f (x)dx = °

Za

b
f (x)dx

To see why this is true, set up the limit for each integral. For the integral
on the left, ¢x = b°a

n . But for the integral on the right, ¢x = a°b
n , which is

the negative of the ¢x on the left. Working the details, we get Property 3.
There is also a constant multiple rule for integrals.

Property 4
Zb

a
c f (x)dx = c

Zb

a
f (x)dx (for any constant c)

To verify this, set up the limit for
Rb

a c f (x)dx and factor the c through the
sum and the limit:

Zb

a
c f (x)dx = lim

n!1

nX

k=1
c f (xk)¢x = c lim

n!1

nX

k=1
f (xk)¢x = c

Zb

a
f (x)dx.
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In a like manner we get a sum-di�erence rule for definite integrals.

Property 5
Zb

a

≥
f (x)± g(x)

¥
dx =

Zb

a
f (x)dx±

Zb

a
g(x)dx

Property 6 If a ∑ c ∑ b, then
Zb

a
f (x)dx =

Zc

a
f (x)dx+

Zb

c
f (x)dx

a c b

y= f (x)

Rc
a f (x)dx

Rb
c f (x)dx

Property 6 is best visualized when f (x) ∏ 0 on [a,b], so that the integrals
give area. In this case

Rc
a f (x) dx is the area under f (x) between a and c, andRb

c f (x) dx is the area under f (x) between c and b. (See the drawing in the
box, above.) Add these two areas together, and we get the area under f (x)
between a and b, which is

Rb
a f (x) dx. Thus

Rb
a f (x) dx =

Rc
a f (x) dx+

Rb
c f (x) dx.

Example 41.4 Suppose
Z4

2
f (x) dx = 3

2
and

Z4

3
f (x) dx = 5

2
. Find

Z3

2
f (x) dx.

Solution By Property 6,
Z4

2
f (x) dx =

Z3

2
f (x) dx+

Z4

3
f (x) dx. Therefore

3
2
=

Z3

2
f (x) dx+ 5

2
. Then

Z3

2
f (x) dx = 3

2
° 5

2
= °1 .

Next a property of the definite integral of a constant function f (x)= c.

Property 7 If c is a constant, then
Zb

a
c dx = c(b°a).

y= f (x)= c

a

c

b

A = c(b°a)

This is clearly true for positive c because the region enclosed between [a,b]
and the line y = c is a rectangle of height c and base b° a, so its area is
c(b°a). (If c is not positive, make the same argument, using Adown.)
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Example 41.5 Find
Z3

°3
2+4

p
9° x2 dx

Z3

°3
2+4

p
9° x2 dx =

Z3

°3
2 dx +

Z3

°3
4
p

9° x2 dx (Property 5)

= 2
°
3° (°3)

¢
+ 4

Z3

°3

p
9° x2 dx (Properties 7 & 4)

= 12+4
º32

2
= 12+18º (by Example 41.1)

Our final two properties are less useful for daily computation, but are
occasionally needed in proofs, particularly in the next chapter.

Property 8 If f (x)∑ g(x) for all x in [a,b], then
Zb

a
f (x)dx ∑

Zb

a
g(x)dx.

To verify this, suppose f (x)∑ g(x) and simply note that
Zb

a
f (x) dx = lim

n!1

nX

k=1
f (xk)¢x ∑ lim

n!1

nX

k=1
g(xk)¢x =

Zb

a
g(x) dx,

because each f (xk)¢x in the sum on the left is no more than the correspond-
ing g(xk)¢x on the right.

Property 9 If there are two numbers m and M for which m ∑ f (x)∑ M

for all x in [a,b], then m(b°a) ∑
Zb

a
f (x)dx ∑ M(b°a).

We can verify this using properties 7 and 8, for these properties imply that

m(b°a)=
Zb

a
m dx ∑

Zb

a
f (x) dx ∑

Zb

a
M dx = M(b°a).

Property 9 is especially easy to see
when f (x) > 0 on [a,b]. For then the
region above [a,b] and below y= f (x)
(shaded on the right) contains an
m£ (b° a) rectangle. But it is also
contained in an M£ (b°a) rectangle.
As the area of the region is

Rb
a f (x) dx,

Property 9 follows.

a b

y= f (x)m

M

Rb
a f (x)dx

b°a
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41.2 Other Formulations of the Definite Integral
Our Definition 41.1 is among the simplest and most pared-down of all defi-
nitions of the definite integral. This section presents two slightly di�erent
definitions. Although they will not used in this text, knowing them can be
useful in matching what you’ve learned from this text with what you may
read elsewhere.

The first alternative to Definition 41.1 is really not all that di�erent. To
define

Rb
a f (x) dx, we put ¢x = (b°a)/n, and xk = a+k¢x (for 0∑ k ∑ n) just as

called for in Definition 41.1. As before this divides the interval [a,b] into
subintervals

[x0, x1], [x1, x2], [x2, x3], . . . , [xn°1, xn],

each of length ¢x. Next (and this where we diverge from Definition 41.1), in
each subinterval [xk°1, xk], select a sample point x§k . This sample point x§k
could be anywhere in [xk°1, xk], including all the way to the right (so x§k = xk),
or all the way to the left (x§k = xk°1). (See the drawing below.)

x

y

a b

y= f (x)
¢x = b°a

n

x0 x1 x2 x3 x4 · · · xk · · · xn

x§1 x§2 x§3 x§4 x§k x§n

On each subinterval [xk°1, xk], establish a rectangle whose base is [xk°1, xk]
and whose height is f (x§k). The area of this rectangle is then f (x§k)¢x (with
the understanding that this could be negative if f (x§k) is negative).

Under this set-up (and as illustrated in the drawing above), we define

Zb

a
f (x) dx = lim

n!1

nX

k=1
f (x§k)¢x.

Notice that this coincides with Definition 41.1 if in each subinterval the
sample point is chosen as far right as possible, so x§k = xk.
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The second alternate formulation of the definite integral allows for
subintervals of varying lengths (so not all subintervals must have the same
length ¢x). It works as follows.

For each positive integer n, divide the interval [a,b] into n subintervals
by selecting numbers x0 < x1 < x2 < ·· · < xn (not necessarily equally spaced)
with a = x0 and b = xn. We call this the partition for n. This partition
divides [a,b] into n subintervals

[x0, x1], [x1, x2], [x2, x3], . . . , [xn°1, xn],

which may have di�erent lengths. The kth subinterval is [xk°1, xk], and we
denote its length as ¢xk, so

¢xk = xk°1 ° xk.

In this way [a,b] is divided into subintervals of widths ¢x1,¢x2, . . . ,¢n. In
each subinterval [xk°1, xk], choose a sample point x§k , as shown below, left.

x

y

a b

y= f (x)

x0 x1 x2 x3· · · xkxk°1 · · · xn

x§1 x§2 x§3 x§k x§n

¢x1¢x2¢x3 ¢xk

¢

x

y

a b

y= f (x)

xn

¢

Now on each [xk°1, xk] establish a rectangle of height f (x§k). This scheme
results in n rectangular strips, such that the kth rectangle has height f (x§k)

and base ¢xk. The Riemann sum is
nP

k=1
f (x§k)¢xk.

At this point it is tempting assert
Rb

a f (x) dx = lim
n!1

nP
k=1

f (x§k)¢xk, but there
is a problem with this. The number n of rectangles could go to infinity
with some of the rectangles remaining thick, while more and more skinny
rectangles are squeezes around them. (See drawing, above right.) If this
happens, the rectangles don’t fit the curve, even if the number of them goes
to infinity.
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This is overcome as follows. For each partition with n rectangles, let ¢
be the largest of the numbers ¢x1,¢x2,¢x3, . . .¢xn. That is ¢ is the width of
the thickest rectangle in the Riemann sum

nP
k=1

f (x§k)¢xk.
We call ¢ the norm of the partition. If we insist that ¢! 0 as n !1,

then all the rectangles in the Riemann sum get skinnier and skinnier, and
therefore fit the curve. This observation leads to our second alternative
definition of the definite integral. Given the above setup, we define

Zb

a
f (x) dx = lim

¢!0

nX

k=1
f (x§k)¢xk.

This definition o�ers the flexibility required for certain practical or
theoretical situations, and you may see this formulation in other texts.
But—for the purposes of this text—we will use Definition 41.1 exclusively.

Exercises for Chapter 41
1. Using Definition 41.1, write out the integral and limit for the area under the

curve y= ln(x3) between x = 1 and x = e.

2. Using Definition 41.1, write out the integral and limit for the area under the
curve y= e2x between x = 0 and x = ln(2).

3. Using Definition 41.1, write out the integral and limit for the area under the
curve y= sin(x) between x = 0 and x =º.

4. Using Definition 41.1, write out the integral and limit for the area under the
curve y= x2 + x+10 from x = 1 to x = 5.

5. Find
R5

0
p

25° x2 dx by considering area.

6. Find
R5

3 2x+10 dx by considering area.

7. Find
R2
°2 2x+2 dx by considering area.

8. Find
Rº/4
°º/4 tan(x) dx by considering area.

9. Find
R3

0 |x°2| dx by considering area.

10. Find
R3

0 |2y°6| dy by considering area.

11. Find
R4
°2 (|w|°2) dw by considering area.

12. Find
R3
°2 f (x) dx, where f (x)=

8
><

>:

x+2 if °2∑ x ∑ 0p
4° x2 if 0∑ x ∑ 2
2° x if 2∑ x ∑ 3

13. Suppose f is a function for which
R5

1 f (x)dx = 3 and
R7

1 f (x)dx =°6. Find
R7

5 f (x)dx.

14. Suppose f is a function for which
R5

2 f (x)dx = 7 and
R8

2 f (x)dx = 8. Find
R8

5 f (x)dx.
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15. Suppose f is a function for which
R5

2 f (x)dx = 4 and
R8

2 f (x)dx = 9. Find
R5

8 7 f (x)dx.

16. Suppose f and g are functions for which
R5

0 f (x) dx = 3,
R2

0 3g(x) dx = 12, andR5
2 g(x) dx =°1. Find

R5
0 3 f (x)° g(x) dx.

17. Write
R2

0 f (x) dx°
R2
°2 f (x) dx°

R°2
°4 f (x) dx as a single integral of the form

Rb
a f (x) dx.

18. Write
R2
°2 f (x) dx+

R5
2 f (x) dx°

R1
°2 f (x) dx as a single integral of the form

Rb
a f (x) dx.

19. A function f (x) is graphed be-
low. If

R4
°4 f (x)dx = 17.8, what isR4

0 f (x)dx?

°4 °3 °2 °1 1 2 3 4

1

2

3

x

y

y= f (x)

20. A function f (x) is graphed be-
low. If

R4
°4 f (x)dx = 22.6, what isR4

0 f (x)dx?

°4 °3 °2 °1 1 2 3 4

1

2

x

y

y= f (x)

21. For a positive integer n, let ¢x = 1/n, and for each integer k (where 1∑ k ∑ n), let
xk = k¢x. Consider the limit lim

n!1

nP
k=1

xk

q
x2

k +1 ¢x. Write a definite integral in

the form
Rb

a f (x)dx that equals this limit.

22. Write the limit lim
n!1

nX

k=1

2+7k/n
1+ (2+7k/n)2

7
n

as a definite integral.

23. Write the limit lim
n!1

nX

k=1

µ
°1+ 2k

n

∂
·cos

µµ
°1+ 2k

n

∂2∂
2
n

as a definite integral.

24. Write the limit lim
n!1

nX

k=1
sin

√s
ºk
n

!
º

n
as a definite integral.
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Exercise Solutions Chapter 41
1. Using Definition 41.1, write out the integral and limit for the area under the

curve y= ln(x3) between x = 1 and x = e.

The integral is
Ze

1
ln

°
x3¢

dx. Here ¢x = (e°1)/n and xk = 1+k¢x = 1+k(e°1)/n.

Therefore
Ze

1
ln

°
x3¢

dx = lim
n!1

nX

k=1
ln

µ
1+k

e°1
n

∂
e°1

n
.

3. Using Definition 41.1, write out the integral and limit for the area under the
curve y= sin(x) between x = 0 and x =º.

The integral is
Zº

0
sin(x) dx. Here ¢x = (º°0)/n =º/n and xk = 0+k¢x = kº/n.

Therefore
Zº

0
sin(x) dx = lim

n!1

nX

k=1
sin

µ
kº
n

∂
º

n
.

5. Find
R5

0
p

25° x2 dx by considering area.
The graph of y =

p
25° x2 =

p
52 ° x2 is

the upper half of a circle of radius 5 cen-
tered at the origin. From the picture,
the integral is one fourth of the area of
a circle of radius 5, so

R5
0
p

25° x2 dx =
º52/4= 25º/4.

5°5

5
0

y=
p

52 ° x2

7. Find
R2
°2 2x+2 dx by considering area.

Draw the graph of y = 2x+2, which is
a line with slope 2 and y-intercept 2.
The relevant region consists of two tri-
angles, one below the x-axis, of area
1
2 ·1 ·2 = 1, and the other above the x-
axis, of area 1

2 ·3 ·6= 9. Then
Z2

°2
2x+2 dx = Aup ° Adown = 9°1= 8.

2

y= 2x+2
6

°2

°2
2°1

9.
R3

0 |x°2| dx = 2.5 (graph below).

°4 °3 °2 °1 1 2 3 4

1

2

3

x

y

y= |x°2|

11.
R4
°2 (|w|°2) dw = Aup°Adown = 2°4=°2

°4 °3 °2 °1 1 2 3 4
w

y
y= |w|°2
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13. Suppose f is a function for which
R5

1 f (x)dx = 3 and
R7

1 f (x)dx =°6. Find
R7

5 f (x)dx.
By Property 6,

R7
1 f (x)dx =

R5
1 f (x)dx+

R7
5 f (x)dx. This yields °6= 3+

R7
5 f (x)dx, soR7

5 f (x)dx =°9.

15. Suppose f is a function for which
R5

2 f (x)dx = 4 and
R8

2 f (x)dx = 9. Find
R5

8 7 f (x)dx.
By Property 6,

R8
2 f (x)dx =

R5
2 f (x)dx+

R8
5 f (x)dx. Applying Property 3 to this, we

get
R8

2 f (x)dx =
R5

2 f (x)dx°
R5

8 f (x)dx. Inserting the given values into this yields
9= 4°

R5
8 f (x)dx, so

R5
8 f (x)dx =°5. Then

R5
8 7 f (x)dx7= 7

R5
8 f (x)dx = 7 · (°5)=°35.

17. Write
R2

0 f (x) dx°
R2
°2 f (x) dx°

R°2
°4 f (x) dx as a single integral of the form

Rb
a f (x) dx.

Applying Property 6 to the middle term, this becomesR2
0 f (x) dx°

≥R0
°2 f (x) dx+

R2
0 f (x) dx

¥
°

R°2
°4 f (x) dx = °

R0
°2 f (x) dx°

R°2
°4 f (x) dx =

°
≥R°2

°4 f (x)dx+
R0
°2 f (x) dx

¥
=°

R0
°4 f (x) dx =

R°4
0 f (x) dx.

19. Because the graph of f is composed of straight lines on [°4,0] it is easy see
that there are six square units of area under the graph of f between °4 and 0.
Thus

R0
°4 f (x)dx = 6. Integral property 6 implies

R4
°4 f (x)dx =

R0
°4 f (x)dx+

R4
0 f (x)dx.

From this, 17.8= 6+
R4

0 f (x)dx, and therefore
R4

0 f (x)dx = 11.8.

21. For a positive integer n, let ¢x = 1/n, and for each integer k (where 1∑ k ∑ n), let
xk = k¢x. Consider the limit lim

n!1

nP
k=1

xk

q
x2

k +1 ¢x. Write a definite integral in

the form
Rb

a f (x)dx that equals this limit.

As k goes from 0 to n, the numbers xk = k¢x go from 0 to n¢x = n 1
n = 1. That is,

they progress, equally spaced, along the interval [0,1]. Definition 41.1 implies

lim
n!1

nX

k=1
xk

q
x2

k +1¢x =
Z2

0
x
p

x+1dx

23. Write the limit lim
n!1

nX

k=1
(°1+2k/n) ·cos

°
(°1+2k/n)2

¢ 2
n

as a definite integral.

As k goes from 1 to n, the numbers °1+2k/n that appear in the above expression
go from °1+2/n to °1+2n/n = 1, which indicates the interval [°1,1], for which
¢x = (1° (°1)/n = 2/n and xk =°1+2k/n. Then:
lim

n!1

nX

k=1
(°1+2k/n) ·cos

°
(°1+2k/n)2

¢ 2
n
= lim

n!1

nX

k=1
xk ·cos

°
(xk)2

¢
¢x =

Z1

°1
x cos

°
x2¢

dx.


