Inverse Functions

Under the right circumstances, a function f will have a so-called *inverse*, a function f^{-1} that "undoes" the effect of f. Whereas f sends an input x to the number f(x), the function f^{-1} sends the number f(x) back to x. We describe f^{-1} intuitively below before giving an exact definition.

First consider a function f. From its graph, we can describe the rule f as follows. For an input x, to find the corresponding output value f(x), move vertically from point x on the x-axis until reaching the graph of f. Then move horizontally to reach the output number f(x) on the y-axis.

The inverse function f^{-1} reverses this by sending any number f(x) back to x. Thus the inputs for f^{-1} are the outputs f(x) of f. Think of f^{-1} as a rule that works this way: Given an input value f(x), move horizontally from this point on the y-axis to the graph of f. Then go vertically to the reach the output xon the x-axis.

But this process doesn't work for just any f. Take the f on the right. Starting at f(x) on the *y*-axis, we can move horizontally to *two* points on the graph, then down to *two* values of x. How can we say which x is the right output for the input f(x)? The problem is due to the horizontal line through f(x) that touches the graph of f twice.

The above discussion means that a function f will have an inverse provided that no horizontal line meets its graph at more than one point. A function that meets this requirement is called **one-to-one**.

4.1 One-to-one Functions and Their Inverses

Now we will formalize the previous page's discussion. In order to define the inverse of a function, we first require that it be one-to-one.

Definition 4.1 A function f(x) is **one-to-one** if no horizontal line meets its graph at more than one point.

For example, the function $f(x) = \sqrt{x} + 1$ is one-to-one because no horizontal line intersects its graph more than once. (Each horizontal line touches the graph at one point or none at all.)

But the function $f(x) = x^2$ is *not* one-to-one because there exist horizontal lines intersecting the graph at more than one point.

The term "one-to-one" comes from the fact that any one output number f(x) corresponds to exactly one (and not more than one) input number x.

With one-to-one functions defined, we can now define the inverse of such a function. On the previous page we said the inverse of f should be a function f^{-1} sending f(x) back to x, which means $f^{-1}(f(x)) = x$.

Definition 4.2 Any one-to-one function f with domain X and range Y has an **inverse**, which is a function f^{-1} with domain Y and range X, for which $f^{-1}(f(x)) = x$ for any x in X, and $f(f^{-1}(y)) = y$ for any y in Y.

As an illustration, the diagram below shows the graph of a one-to-one function *f* with domain *X* and range *Y*.

The inverse f^{-1} sends any *b* in *Y* to the number *x* in *X* for which f(x) = b. Thus

$$f^{-1}(b) = \left(\begin{array}{c} \text{the number } x \\ \text{for which } f(x) = b \end{array} \right).$$

Thus $f(f^{-1}(b)) = b$. This and $f^{-1}(f(x)) = x$ mean that f and f^{-1} "undo" one another.

Above we have b = f(x) and $f^{-1}(b) = x$. In general, if x and y are two numbers for which y = f(x), then $f^{-1}(y) = x$. In other words, the equations y = f(x) and $f^{-1}(y) = x$ express the same relationship between x and y.

On the previous page we encountered the equation

$$f^{-1}(b) = \begin{pmatrix} \text{the number } x \\ \text{for which } f(x) = b \end{pmatrix}.$$
 (4.1)

This is a rule for f^{-1} . It says that when you are dealing with a number *b* and are trying to find $f^{-1}(b)$, ask yourself what number *x* you'd have to plug into *f* to get *b*. Then $f^{-1}(b)$ equals that number *x*. This kind of backwards thinking can often lead to an easy answer.

Example 4.1 Let $f(x) = 2 + x + 2^x$. This function increases as *x* increases, so it is one-to-one and thus has an inverse. Find $f^{-1}(3)$, $f^{-1}(5)$ and $f^{-1}(8)$.

Let's start with $f^{-1}(3)$. Equation (4.1) says $f^{-1}(3) = \begin{pmatrix} \text{the number } x \\ \text{for which } f(x) = 3 \end{pmatrix}$. Try plugging a few values into f. You will soon hit upon $f(0) = 2 + 0 + 2^0 = 3$. Thus $f^{-1}(3) = 0$. Also $f(1) = 2 + 1 + 2^1 = 5$, so $f^{-1}(5) = 1$. We are on a roll: $f(2) = 2 + 2 + 2^2 = 8$, so $f^{-1}(8) = 2$.

But computing, say, $f^{-1}(7)$ is not so easy because there is no obvious *x* for which f(x) = 7. This is not to say that $f^{-1}(7)$ doesn't exist (it does). It's just not something we can calculate mentally.

To close, we remark that the function f^{-1} is pronounced "*f inverse*." Please note that f^{-1} is the *symbol* for the function defined by Definition 4.2. It is *not* the reciprocal of *f*. That is, $f^{-1}(x) \neq \frac{1}{f(x)}$. If we ever wanted to express the reciprocal of f(x) we would write $(f(x))^{-1} = \frac{1}{f(x)}$.

And finally, a question. Does the function f^{-1} have an inverse? The equation $f(f^{-1}(y)) = y$ means that f undoes the effect of f^{-1} , so f is the inverse of f^{-1} . In other words $(f^{-1})^{-1} = f$.

Exercises for Section 4.1

- **1.** Suppose $f(x) = 2^x$. Find $f^{-1}(8)$, $f^{-1}(4)$, $f^{-1}(2)$, $f^{-1}(1)$, and $f^{-1}(0.5)$.
- **2.** Suppose $f(x) = 10^x$. Find $f^{-1}(1000)$, $f^{-1}(100)$, $f^{-1}(10)$, $f^{-1}(1)$, and $f^{-1}(0.1)$.
- **3.** Suppose $f(x) = x + x^3$. Find $f^{-1}(2)$, $f^{-1}(10)$, $f^{-1}(-2)$, $f^{-1}(0)$, and $f^{-1}(\sqrt[3]{3}+3)$.
- **4.** Suppose $f(x) = 3^x + x^3$. Find $f^{-1}(4)$, $f^{-1}(17)$, $f^{-1}(1)$, $f^{-1}(54)$ and $f^{-1}(-2/3)$.
- **5.** Suppose $f(x) = x + \sin(x)$. Find $f^{-1}(0)$, $f^{-1}(\pi)$, $f^{-1}(\pi/2 + 1)$ and $f^{-1}(2\pi)$.
- **6.** Suppose $f(x) = x + \cos(x)$. Find $f^{-1}(1)$, $f^{-1}(\pi/2)$, $f^{-1}(\pi-1)$ and $f^{-1}(2\pi+1)$.

4.2 Graphing the Inverse of a Function

We now explore how the graph of f^{-1} is related to the graph of f. As starting point consider the one-to-one function f graphed below.

Let's draw the graph of f^{-1} . The range of f is the interval [-2,3.5], so this is the domain of f^{-1} . To graph f^{-1} we will pick some values in this interval, plug them into f^{-1} , make a table, and sketch the graph.

We learned how to find $f^{-1}(b)$ in Section 4.1. For example, $f^{-1}(2)$ is the number x for which f(x) = 2. The graph of f shows f(1) = 2, so $f^{-1}(2) = 1$. Similarly f(4) = 3.5, so $f^{-1}(3.5) = 4$. Continuing, we get

$$f^{-1}(-2) = -4$$
, $f^{-1}(-1) = -3$, $f^{-1}(0) = -2$, $f^{-1}(1) = -1$, $f^{-1}(3) = 3$.

Next we tally these values in a table, plot the points and connect them. For comparison we show the graph of f^{-1} (dashed) with that of f (solid).

There is a striking relationship between the graphs of f and f^{-1} . The graph of f^{-1} is the graph of f reflected across the dotted line. This line is the graph of the equation y = x. (Think of it as the graph of the equation $y = 1 \cdot x + 0$, so it is a line with slope 1 and *y*-intercept 0.)

It turns out that the graph of f^{-1} is always the graph of f reflected across the line y = x. Before justifying this we look at one more example.

Example 4.2 Consider the function $f(x) = \sqrt{x}$, with domain $[0,\infty)$ and range $[0,\infty)$. Then its inverse also has domain and range $[0,\infty)$. Moreover,

$$f^{-1}(b) = \begin{pmatrix} \text{the number } x \text{ for} \\ \text{which } f(x) = b \end{pmatrix} = \begin{pmatrix} \text{the number } x \text{ for} \\ \text{which } \sqrt{x} = b \end{pmatrix} = b^2.$$

Thus the inverse of $f(x) = \sqrt{x}$ is the function $f^{-1}(x) = x^2$.

The graphs of $y = \sqrt{x}$ and its inverse $y = x^2$ are sketched below. Notice that because the domain of f^{-1} is $[0,\infty)$, the graph of $f^{-1}(x) = x^2$ is plotted only on this domain. (The inverse f^{-1} has no negative inputs because $f(x) = \sqrt{x}$ has no negative outputs.) Just as in the previous example, the graph of f^{-1} is the graph of f reflected across the line y = x.

To see why the graph of f^{-1} is always the graph of f reflected across the line y = x, recall that the graph of y = f(x) consists of all points (x, f(x))where x is in the domain of f. Because the inverse f^{-1} sends each number f(x) to x, its graph consists of the points (f(x), x). This amounts to saying that for any point (a, b) on the graph of f there is a corresponding point (b, a)on the graph of f^{-1} .

Now think about how points (a, b) and (b, a) are related. The picture above shows that any point (a, b) on the graph of f reflects across the line y = x to (b, a), which is on the graph of f^{-1} . We have established the following fact.

Fact: The graph of f^{-1} is the graph of *f* reflected across the line y = x.

Exercises for Section 4.2

1. Below is the graph of $f(x) = 2^x$. Find $f^{-1}(4)$, $f^{-1}(2)$, $f^{-1}(1)$, $f^{-1}(1/2)$, $f^{-1}(1/4)$, $f^{-1}(1/8)$, and $f^{-1}(1/16)$. Sketch the graph of f^{-1} .

3. A function *f* is graphed below. Find $f^{-1}(-4)$, $f^{-1}(-3)$, $f^{-1}(-2)$, $f^{-1}(0)$, $f^{-1}(2)$, $f^{-1}(3)$ and $f^{-1}(4)$. Sketch the graph of f^{-1} .

2. Below is the graph of $f(x) = \frac{1}{2^x}$. Find $f^{-1}(4)$, $f^{-1}(2)$, $f^{-1}(1)$, $f^{-1}(1/2)$, $f^{-1}(1/4)$, $f^{-1}(1/8)$, and $f^{-1}(1/16)$. Sketch the graph of f^{-1} .

4. A function *f* is graphed below. Find $f^{-1}(-3)$, $f^{-1}(-2)$, $f^{-1}(-1)$, $f^{-1}(0)$, $f^{-1}(2)$, and $f^{-1}(4)$. Sketch the graph of f^{-1} .

5. Here is a table for some values of a one-to-one function f. Use it to make a table for f^{-1} . Sketch the graphs of f and f^{-1} .

x	-4	-3	-2	-1	0	1	2	3	4
f(x)	5	4	3	2	1	0.75	0.5	0.25	0

6. Here is a table for some values of a one-to-one function f. Use it to make a table for f^{-1} . Sketch the graphs of f and f^{-1} .

x	-4	-3	-2	-1	0	1	2	3	4
f(x)	-4	-3.5	-3	-2.5	-1	1	3	3.5	5

4.3 Finding Inverses

This section reviews a technique for finding the function $f^{-1}(x)$ when f(x) is given as an algebraic expression.

As a point of departure we note one of many uses for inverses: they can be used to solve certain equations. For example, suppose we have an equation of form

$$y = f(x)$$

and we want to solve it for x in terms of y. That is, we want to isolate the x on one side of the equation, and have on the other side an expression involving the variable y. If f happens to have an inverse, then we can take f^{-1} of both sides of the above equation to get $f^{-1}(y) = f^{-1}(f(x))$. As Definition 4.2 assures us that $f^{-1}(f(x)) = x$, this becomes

$$f^{-1}(y) = x$$

and we have now solved for *x* in terms of *y*.

In summary, solving y = f(x) for x yields $x = f^{-1}(y)$.

Now suppose we know the function f(x) but do not know what $f^{-1}(x)$ is. The above discussion tells us that we can find $f^{-1}(x)$ by algebraically solving the equation y = f(x) for x, and we will get $x = f^{-1}(y)$. Of course we will probably want to use x as the independent variable and y as a dependent variable, so we can interchange them to get $y = f^{-1}(x)$, and the inverse is at hand. Here is a summary of our technique.

How to compute the inverse of f(x)

- 1. Write y = f(x)
- 2. Interchange *x* and *y* to get x = f(y).
- 3. Solve x = f(y) for *y* to get $y = f^{-1}(x)$.

Example 4.3 Find the inverse of the function $f(x) = x^3 + 1$.

Let us carry out the steps of our new procedure.

- 1. Write y = f(x), which in this case is $y = x^3 + 1$.
- 2. Interchange *x* and *y* to get $x = y^3 + 1$.
- 3. Next we solve $x = y^3 + 1$ for *y*. $x - 1 = y^3$
 - $\sqrt[3]{x-1} = \gamma.$

Therefore $y = \sqrt[3]{x-1}$, and we conclude $f^{-1}(x) = \sqrt[3]{x-1}$.

The inverse has now been computed and it is $f^{-1}(x) = \sqrt[3]{x-1}$.

Þ

Let's round out Example 4.3 by comparing the graphs of f(x) and $f^{-1}(x)$. This is a good opportunity to use the graph-shifting techniques of Section 2.4. the graph of $f(x) = x^3 + 1$ is the graph of $y = x^3$ shifted up one unit, and the graph of $f^{-1}(x) = \sqrt[3]{x-1}$ is the graph of $y = \sqrt[3]{x}$ shifted right one unit. The shifted graphs are sketched below. As expected, one is the reflection of the other across the line y = x.

If you are ever in doubt that the inverse you have computed is correct, there is a way to check it. Definition 4.2 says both equations $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$ must hold. Verifying one (or both) of these assures you that your work is correct. In the example just done, we started with $f(x) = x^3 + 1$ and obtained $f^{-1}(x) = \sqrt[3]{x-1}$. Note that

$$f^{-1}(f(x)) = \sqrt[3]{f(x) - 1} = \sqrt[3]{x^3 + 1 - 1} = \sqrt[3]{x^3} = x.$$

The fact that $f^{-1}(f(x)) = x$ indicates that our work was correct. The inverse f^{-1} literally "undoes" the effect of f, sending any number f(x) back to x.

This section has used only the letter f for a function. Of course other letters can be used. A one-to-one function g will have an inverse g^{-1} , etc.

Example 4.4 Is the function $g(x) = \frac{x}{x-1}$ one-to-one? If so, find its inverse.

To answer the first question, let's sketch the graph of g and see whether any horizontal line crosses its graph more than once. To draw the graph we can manipulate g slightly and apply shifting. Notice that

$$g(x) = \frac{x}{x-1} = \frac{1+(x-1)}{x-1} = \frac{1}{x-1} + \frac{x-1}{x-1} = \frac{1}{x-1} + 1.$$

Finding Inverses

As $g(x) = \frac{1}{x-1} + 1$, we see that its graph is the graph of $y = \frac{1}{x}$ shifted right one unit and up one unit. This is sketched below. As no horizontal line crosses the graph more than once, *g* is one-to-one, so it has an inverse.

Now we carry out our procedure for computing g^{-1} from g. The first step is to write the equation y = g(x), which in this case is

$$y=\frac{x}{x-1}.$$

Next we interchange x and y to get

$$x=\frac{y}{y-1}.$$

Now we must solve this for *y*. We want to isolate *y*, so as a fist step we get the *y* out of the denominator by multiplying both sides by y - 1.

$$x(y-1) = \frac{y}{y-1}(y-1)$$

$$xy-x = y$$

Now we need to collect all occurrences of *y* on one side. Doing this, we get

$$xy-y = x$$

To isolate *y* we factor it out on the left and divide both sides by x - 1.

$$y(x-1) = x$$

$$\frac{y(x-1)}{x-1} = \frac{x}{x-1}$$

$$y = \frac{x}{x-1}$$

Now that the equation has been solved for *y* we find that $g^{-1}(x) = \frac{x}{x-1}$. In summary, the inverse of $g(x) = \frac{x}{x-1}$ is the function $g^{-1}(x) = \frac{x}{x-1}$. Interestingly, the inverse of g is g itself, that is, g is its own inverse. This is just a coincidence – most functions are not equal to their inverses. But perhaps we should not have been surprised that this g is its own inverse: Looking at the above graph of g, we see that it is symmetric with respect to the line y = x, that is, reflecting it across the line does not yield a new graph. Thus the graphs of g and g^{-1} are identical, so they are the same function.

Our technique of finding the inverse of *f* by solving x = f(y) for *y* has its limitations because the equation may be difficult or impossible to solve.

Consider the function $f(x) = x + \sin(x)$ from Exercise 5 on page 61. By "reverse engineering" we can compute $f^{-1}(x)$ for certain convenient values of x. For instance, if asked about $f^{-1}(\pi/2 + 1)$ we would (after some thought) note that $f(\pi/2) = \pi/2 + \sin(\pi/2) = \pi/2 + 1$ and therefore $f^{-1}(\pi/2 + 1) = \pi/2$.

But actually finding a formula for $f^{-1}(x)$ is problematic. It involves solving the equation $x = y + \sin(y)$ for y. This is a very difficult problem because our standard equation solving techniques cannot isolate the y.

Exercises for Section 4.3

Each of the following functions is one-to-one. Use the methods of this section to find their inverses.

2. $f(x) = -\frac{1}{x}$ 1. $f(x) = (x-3)^3 - 1$ **4.** $f(x) = 2 - x^3$ **3.** $g(x) = -\sqrt[5]{x+2}$ **5.** $f(x) = \frac{2-x}{x+5}$ 6. $f(x) = \frac{2-3x}{x+5}$ 7. $f(x) = x^3 + 3x^2 + 3x + 1$ 8. $f(x) = x^3 + 3x^2 + 3x$ (Hint: factor first.) (Hint: compare to Exercise 7.) **9.** $f(x) = 2 - x^2$ on domain $[0, \infty)$ **10.** $h(x) = \frac{2}{\sqrt[3]{r}}$ **11.** $f(\theta) = \frac{1}{\theta + 3}$ **12.** $f(x) = 1 - \frac{1}{x}$ **14.** $f(w) = \frac{1}{w^3 + 3}$ **13.** $g(x) = 3 - 5\sqrt[3]{4x - 3}$

4.4 Restricting the Domain

If a function is not one-to-one, then it has no inverse. This is the case for $f(x) = x^2$ graphed below, left. A horizontal line crosses its graph twice, so *f* is not one-to-one and thus has no inverse.

Occasionally we will be in a situation where it is still desirable to find an "inverse" of such a function. This task is not as hopeless as it may seem. One approach is to restrict the domain of f to make it one-to-one.

For the function $f(x) = x^2$, we could declare the domain to be the interval $[0,\infty)$, rather than its natural domain $(-\infty,\infty)$. This middle graph above shows y = f(x) with this domain. Now f is one-to-one, and indeed it has an inverse $f^{-1}(x) = \sqrt{x}$. The right-hand graph shows f with this *restricted domain*, along with its inverse $f^{-1}(x) = \sqrt{x}$.

Modifying the domain of a function to make it one-to-one is called *restricting the domain*. We will rarely have to use this technique, so it is not necessary to work any exercises involving it. It is used only in Chapter 6 where we develop the useful idea of inverse trig functions.

A function like sin(x) is clearly not-one-to one because many horizontal lines cross it infinitely many times. But if we restrict its domain to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then the resulting function (graphed bold below) is one-to-one and has an inverse.

Chapter 6 will develop this idea. We will restrict the domains of the trigonometric functions to make them one-to-one. We will then be able to define such functions as $\sin^{-1}(x)$, $\tan^{-1}(x)$, etc.

4.5 Exercise Solutions for Chapter 4

Exercises for Section 4.1

1. Suppose $f(x) = 2^x$. Find $f^{-1}(8)$, $f^{-1}(4)$, $f^{-1}(2)$, $f^{-1}(1)$, and $f^{-1}(0.5)$. f(3) = 8, so $f^{-1}(8) = 3$ f(2) = 4, so $f^{-1}(4) = 2$ f(1) = 2, so $f^{-1}(2) = 1$ $f(-1) = 2^{-1} = \frac{1}{2} = 0.5$, so $f^{-1}(0.5) = -1$

3. Suppose
$$f(x) = x + x^3$$
. Find $f^{-1}(2)$, $f^{-1}(10)$, $f^{-1}(-2)$, $f^{-1}(0)$, and $f^{-1}(\sqrt[3]{3} + 3)$.
 $f(1) = 2$, so $f^{-1}(2) = 1$ $f(2) = 10$, so $f^{-1}(10) = 2$ $f(-1) = -2$, so $f^{-1}(-2) = -1$
 $f(\sqrt[3]{3}) = \sqrt[3]{3} + \sqrt[3]{3}^3 = \sqrt[3]{3} + 3$, so $f^{-1}(\sqrt[3]{3} + 3) = \sqrt[3]{3}$

5. Suppose
$$f(x) = x + \sin(x)$$
. Find $f^{-1}(0)$, $f^{-1}(\pi)$, $f^{-1}(\pi/2 + 1)$ and $f^{-1}(2\pi)$.
 $f(0) = 0$, so $f^{-1}(0) = 0$ $f(\pi) = \pi$, so $f^{-1}(\pi) = \pi$
 $f(\pi/2) = \pi/2 + 1$, so $f^{-1}(\pi/2 + 1) = \pi/2$ $f(2\pi) = 2\pi$, so $f^{-1}(2\pi) = 2\pi$

Exercises for Section 4.2

1. Below is the graph of
$$f(x) = 2^x$$
.
 $f(2) = 4$, so $f^{-1}(4) = 2$
 $f(1) = 2$, so $f^{-1}(2) = 1$
 $f(0) = 1$, so $f^{-1}(1) = 0$
 $f(-1) = 1/2$, so $f^{-1}(1/2) = -1$,
 $f(-2) = 1/4$, so $f^{-1}(1/4) = -2$
 $f(-3) = 1/8$, so $f^{-1}(1/8) = -3$
 $f(-4) = 1/16$, so $f^{-1}(1/16) = -4$.

2. A function *f* is graphed below.

$$f(-4) = -4$$
, so $f^{-1}(-4) = -4$
 $f(-2) = -3$, so $f^{-1}(-3) = -2$
 $f(-1) = -2$, so $f^{-1}(-2) = -1$
 $f(0) = -0$, so $f^{-1}(0) = 0$
 $f(1) = 2$, so $f^{-1}(2) = 1$
 $f(2) = 3$, so $f^{-1}(3) = 2$
 $f(4) = 4$, so $f^{-1}(4) = 4$

3. Here is a table for some values of a one-to-one function f. Use it to make a table for f^{-1} . Sketch the graphs of f and f^{-1} .

x	-4	-3	-2	-1	0	1	2	3	4
f(x)	5	4	3	2	1	0.75	0.5	0.25	0
		_			_		_		
x	5	4	3	2	1	0.75	0.5	0.25	0
$f^{-1}(x)$	-4	-3	-2	-1	0	1	2	3	4

Exercises for Section 4.3

1. Find the inverse:
$$f(x) = (x-3)^3 - 1$$

$$y = (x-3)^{3} - 1$$

$$x = (y-3)^{3} - 1$$

$$x+1 = (y-3)^{3}$$

$$\sqrt[3]{x+1} = y-3$$

$$y = \sqrt[3]{x+1} + 3$$

$$f^{-1}(x) = \sqrt[3]{x+1} + 3$$

5. Find the inverse: $f(x) = \frac{2-x}{x+5}$

$$y = \frac{2-x}{x+5}$$
$$x = \frac{2-y}{y+5}$$
$$x(y+5) = 2-y$$
$$xy+5x = 2-y$$
$$xy+y = 2-5x$$
$$y(x+1) = 2-5x$$
$$y = \frac{2-5x}{x+1}$$
$$f^{-1}(x) = \frac{2-5x}{x+1}$$

3. Find the inverse: $g(x) = -\sqrt[5]{x+2}$

$$y = -\sqrt[5]{x+2}$$

$$x = -\sqrt[5]{y+2}$$

$$x^{5} = \left(-\sqrt[5]{y+2}\right)^{5}$$

$$x^{5} = -(y+2)$$

$$y = -2 - x^{5}$$

$$g^{-1}(x) = -2 - x^{5}$$

7. Find the inverse: $f(x) = x^3 + 3x^2 + 3x + 1$

$$y = x^{3} + 3x^{2} + 3x + 1$$
$$x = y^{3} + 3y^{2} + 3y + 1$$
$$x = (y+1)^{3}$$
$$\sqrt[3]{x} = \sqrt[3]{(y+1)^{3}}$$
$$\sqrt[3]{x} = y+1$$
$$y = \sqrt[3]{x} - 1$$
$$f^{-1}(x) = \sqrt[3]{x} - 1$$

9. Find the inverse: $f(x) = 2 - x^2$

$$y = 2 - x^{2}$$

$$x = 2 - y^{2}$$

$$y^{2} = 2 - x$$

$$y = \sqrt{2 - x}$$

$$f^{-1}(x) = \sqrt{2 - x}$$

11. Find the inverse of $f(\theta) = \frac{1}{\theta + 3}$ **15**

13. Find the inverse:
$$g(x) = 3 - 5\sqrt[3]{4x - 3}$$

$$y = \frac{1}{\theta+3}$$

$$y = 3-5\sqrt[3]{4x-3}$$

$$x = 3-5\sqrt[3]{4y-3}$$

$$\theta = \frac{1}{y+3}$$

$$\frac{3-x}{5} = \sqrt[3]{4y-3}$$

$$\frac{3-x}{5} = \sqrt[3]{4y-3}$$

$$\frac{3-x}{5} = \sqrt[3]{4y-3}$$

$$\frac{3-x}{5} = \sqrt[3]{4y-3}$$

$$\frac{(3-x)}{5}^3 = 4y-3$$

$$\left(\frac{3-x}{5}\right)^3 + 3 = 4y$$

$$y = \frac{1-3\theta}{\theta}$$

$$y = \frac{1}{4}\left(\frac{3-x}{5}\right)^3 + \frac{3}{4}$$

$$f^{-1}(\theta) = \frac{1-3\theta}{\theta}$$

$$g^{-1}(x) = \frac{1}{4}\left(\frac{3-x}{5}\right)^3 + \frac{3}{4}$$