CHAPTER 39

Differentials and Differential Equations

ften in applications, information about the derivative of a function is
known, and the function must be found. We now study such problems.

39.1 Initial Value Problems

When we find the indefinite integral of a function f(x), we don’t get a single
function, but rather infinitely many different functions F(x)+C, one function
for each different value of C:

ff(x)dx = F(x)+C.

But in some applications, extra information is available that gives a value
for C. For example, suppose we happen to know that, say, F(2)+C =5. Then
C =5-F(2). This kind of problem is called an initial value problem.

1
Example 39.1 Suppose g(x) is a function for which g'(x) = x + T2 and
X
g(1)="7. Find g(x).
Solution Because g'(x)=x+ 15, g(x) is an antiderivative of x + 15, so

()—f(+ 1 )d —x—2+t L+ C
glx) = x1+x2 x—2 an “(x .

So g(x) = %2 +tan~1(x) + C, but we still don’t know g exactly because we don’t
know C. But we do know g(1) =7, and this is enough to get a value of C:

gl) = 17
12
E+tan_1(1)+C = 7
1
20 = 7
2 4
Cc - 7_1_5 _ 26-n7
2 4 4
2 26 —

ﬂ.@)

Answer Having found C, we know g exactly: g(x) = % +tan"1(x) + 1
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Initial value problems occur often in the context of motion. Recall that
if an object moving on a straight line has position s(¢) at time ¢, then its
velocity at time ¢ is v(¢) = s/(¢).

i s(t)

13’.:_5-1 — vel. =5'(¢)

Having studied antiderivatives, we see this in a new light. Since velocity
is the derivative of position, position is an antiderivative of velocity, that is,

s(t) = fv(t)dt.

Also, as acceleration is the derivative of velocity, then velocity is an
antiderivative of acceleration:

v(t) = fa(t)dt.

In summary, the following formulas apply to motion on a straight line.

Position at time ¢ s(¢) = [v()dt
Velocity at time ¢: v(®) = ') = [a@®)dt
Acceleration at time ¢: a(¥) = v'(¥)

So if you know velocity, you can get position as the integral of velocity. If you
know acceleration, then you can get velocity as the integral of acceleration.
Taking the integrals may introduce some constants, but often initial value
conditions apply and yield exact expressions for these functions.

Example 39.2 A ball tossed straight up has a constant acceleration of
—32 feet per second per second. At time ¢=0 its velocity is 20 ft/sec, and it is
5 feet high. Find the position function s(#) giving the ball’s height at time .

Solution We can obtain velocity from acceleration as o —
v(t) = [a(t)dt = [-32dt =-32t+C. So v(t)=-32t+C. To :
find C, use the fact that velocity at time 0 is v(0) = 20 ft/sec.
Thus 20 = v(0) = —32-0+C, so 20=C, and | v(t) = —32¢ + 20.

We seek the position function, and it is an antiderivative of :
velocity, so s(¢) = [v(t)dt = [(-32t +20)dt = —16t% +20¢ + C, . s(?)
and so s(t) = —16¢2+20¢+C. We just need to find C. Because :
the ball’s height at time ¢ = 0 is 5 feet, we have 5 = s(0) = —16- :
02+20-0+C, which gives C =5. Thus s(t) = —16¢2+20t+5.  ¢=0e

Answer: The position function is | s(¢) = =162 + 20t + 5 | £3 _IS_
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39.2 Differentials

Thus far, certain expressions dx and dy have appeared in our notation. For
instance, an indefinite integral [f(x)dx ends with a dx. Also, Z—% stands
for the derivative of a function y = f(x), that is, 2—% = f'(x). Until now, we
have viewed the expression % as a single notational package that stands
for f'(x). We have not assigned any formal meaning to the numerator dy
and the denominator dx. We do so now. These terms have special meanings,

and they are called differentials.

We define dx and dy to be variables.
Although they can potentially have any y y=f)
value, we usually regard dx and dy as
standing for small positive numbers.

We interpret them as follows. o = 3dy=f'lrdx
Given a value x in the domain of a .
function f, the variable dx is viewed as X x+dx
a quantity that is added to x. Soif dx is
positive, then x+dx is to the right of «. y y=f)
(See the diagrams on the right.)
The variable dy is defined to be the i o
product of f'(x) and dx, namely B —— ldy=ftda
dy = f'(x)-dx. x xrdx
Notice that, when dx and dy are defined y y=fx)
this way, then dy divided by dx is
dy f'(-dx | dy=r'da
)
dx dx dx—
In other words, under this setup the e tdx

quotient % really does equal f'(x).
Geometrically, the variables dy and dx can be viewed as the side lengths
of a right triangle obtained by moving a horizontal distance of dx from
the point (x,f(x)), then a vertical distance of dy, and then back to (x, f(x)).
This is shown above for several values of dx. Regardless of the value dx,
the hypotenuse has slope ﬂl—srel = % = f'(x), so the hypotenuse is tangent to
y=[) at (x,f(x).
Variables dx and dy have a special name. They are called differentials.
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Definition 39.1 Consider a differentiable function f(x), and a number x
in its domain. Under this circumstance, the differentials dx and dy are
two variables related by the equation dy = f'(x)dx.

y y=f)
(x, f(x) Idy =f'(x)dx
< ——dx—
T TS X
x x+dx

Geometrically the differentials dx and dy have the following interpretation:
Starting at the point (x,f(x)), move along the tangent line to y = f(x).
If the run is dx, then the rise will be dy.

Notice that the equation dy = f'(x)dx contains three variables: dy,
dx and x. As dx increases, the triangle grows, and its vertical height dy
increases by a factor of f'(x). This can happen at different points x, so the
growth factor f'(x) depends on x. The next example illustrates this.

Example 39.3 Consider the function f(x) = x?. We will now examine the
differentials dx and dy at two different values of x. For this particular

function £, the equation dy = f'(x)dx is

Say x =1. Then dy =2-1dx, or dy = 2dx. This means that at x =1, dy is
always twice what dx is. (See the diagram below.) Moving along the tangent
line from (1, f(1)) =(1,1), your run will be dx and your rise will be dy =2dx.

flx) = «2
At x = -2:
gy _ %flzii)dx dy=-4dx Atx=1:
Y= dy=2dx dy=2-1dx
dy=2dx
dx \/
—2 1

But if (say) x = -2, then dy =2-(-2)dx, or dy = —4dx. Starting at (-2, f(-2))
and tracing the tangent line, for a run of dx, the rise is dy = —4dx. )
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In working with differentials, one must be very sensitive to the variables
used. For example, the function s = g(¢) has differentials ds and dt, with
ds=g'(¢t)dt.

One reason that differentials are useful is that they facilitate a certain
“separation of variables.” They allow an equation like

dy

dx )

to be written in the equivalent form
dy=f'(x)dx,

with the y’s on one side and the x’s on the other. This will be extremely
useful in the next section.

Differentials have an interesting and instructive history. The derivative
notation Z—i goes back to Gottfried Leibniz (1646—1716), who (along with
Issac Newton) is credited with the invention of calculus. In Leibniz and
Newton’s time the concept of a limit had not even been invented, so they
arrived at derivatives differently than we do today.

Leibniz regarded dx as a very small increment to x, as illustrated below.
Let’s denote the resulting change in y as Ay = f(x + dx) — f(x) (see below).

y
y=1f(x)

fx+dx) /
: Ay = f(x+dx)— f(x)
L

f(x)

From our modern perspective, the derivative f(x) is

. flx+dx)—f(x)
m
dx—0 dx
I Ay
im ——.
dx—0 dx

|
—
=

fl(x)

Consequently
2 2
fix)= p

X
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and the approximation becomes better and better the smaller dx is. Leibniz
didn’t have limits, so he regarded f'(x) as the quotient % where dx is
“infinitely small.” For an “infinitely small” dx, he denoted the corresponding

‘infinitely small” change Ay as dy. Thus he arrived at
dy
M) —
f= dx’

Leibniz called the infinitely small quantities dx and dy infinitesimals.

Although building calculus on a foundation of “infinitely small quantities”
was logically questionable, it did lead to the spectacular theory of what
we now call calculus. Today we regard dx and dy not as infinitely small
quantities, but as differentials, as defined by Definition 39.1. This has the
advantage of giving the notation Z—i a clear meaning, while avoiding the
logical pitfalls of infinitesimals.

39.3 Differential Equations

[This section is yet to be written. The material to be contained in it is not
included in VCU’s MATH 200.]

Exercises for Chapter 39
1. Suppose f(x) is a function for which f'(x)=/x+2 and f(4)="7. Find f(x).

2. Suppose f(x) is a function for which f'(x) = % +3x and f(1)=5. Find f(x).

3. Suppose f(x) is a function for which f'(x) = 2x +cos(x) and f(n) =0. Find f(x).
4. Suppose f(x) is a function for which f'(x)= %sec(x)tan(x) and f£(0)=1. Find f(x).

5. Suppose f(x) is a function for which f'(x)= 1 + % +1 and £(1)=3. Find f(x).
X X

6. Suppose f(x) is a function for which f'(x)= % and f(-1)=-5. Find f(x).
X

7. Suppose f(x) is a function for which f’'(x)= l?) +x. The graph of f passes through
X
the point (2,11). Find f(x).

8. Suppose f(x) is a function for which f'(x) = 3x% + 1. The graph of f passes through
the point (1,3). Find f(x).

9. Suppose an object moving on a line has velocity function v(¢) = 2¢ + 3. Find its
position function s(#), given that you happen to know s(2) =8.

10. An object moving on a line has velocity function v(¢) = %ﬁ +3. Find its position

function s(¢), given that you happen to know s(4) = 10.
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11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

A ball, tossed straight up, has a constant acceleration of —32 feet per second per
second. At time ¢ =0 its velocity is v(0) = 10 feet per second, and its position is
s(0) = 6 feet. Find the position function s(#).

A falling object has a velocity of —32¢ — 16 feet per second ¢ seconds after it is
dropped. It hits ground 10 seconds after being dropped. From what height was
it dropped?

An object moving on the number line has velocity v(t) = 4¢3 at time ¢ seconds. At
time ¢ =1 it is at the point 4 on the line. When is the object at the point 19?

An object moving on the number line has velocity v(¢) = 3¢2 + 4 at time ¢ seconds.
It is at the point 2 on the number line the instant its acceleration is 12 units per
second per second. Find the position function s(z).

A helicopter is rising vertically at a rate of 32 feet per second. At the instant
it is 48 feet above the ground, a package is dropped from it. Assuming the
acceleration due to gravity is —32 feet per second per second, find the velocity at
which the package strikes ground.

An object moving on a line has an acceleration function of a(¢) = 12 - 12¢2. Its
position function satisfies s(0) =0 and s(1) = 6. Find the position function s(z).

A rock, propelled straight down from the top of a bridge over a river at time ¢ =0
seconds has a velocity of v(¢) = —32¢ — 5 feet per second at time ¢. The rock hits
water with a velocity of —69 feet per second. How high is the bridge?

A bus has stopped to pick up riders, and Richard is running at a rate of 10 feet
per second to catch it. When he is 25 feet behind the front door of the bus, it
begins to pull away with a constant acceleration of 2 feet per second per second.
Will Richard reach the front door of the bus? If so, when will this happen?

A block sliding down a 100—foot-long inclined plane has a constant acceleration
of 2 feet per second per second. It takes the block five seconds to slide from the
top to the bottom. What is its velocity when it reaches the bottom?

/\ 10¢’

A freight train, moving with a constant acceleration on a straight track, travels
20 miles in half an hour. At the beginning of the half hour period its velocity is
10 miles per hour. What is its velocity at the end of the half hour period?

A car has a velocity of 10 meters per second when the driver sees a stopped car
13 meters away and immediately applies the breaks. The car then de-accelerates
at a constant rate of 5 meters per second per second (that is, its acceleration is
—5 meters per second per second). How long does it take the car to stop? Does it
stop in time?
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Exercise Solutions for Chapter 39

1.

11.

13.

Suppose f(x) is a function for which f'(x)=+vx+2 and f(4)="7. Find f(x).

Solution First, f(x) = [ (vx+2) dx = 2z +2x+C. So 7= f(4) = 2VZ" +2.4+C =
430+C. Thus C:7—%0 = —%, 80 f(x) = %x/a_c3+2x—%.

Suppose f(x) is a function for which f'(x) = 2x + cos(x) and f(n) =0. Find f(x).

Solution First, f(x) = [(2x + cos(x)) dx = x? +sin(x) + C. Now 0 = f(n) = 72 +
sin(n) +C =72+ C, so C = —n2. Therefore f(x) = x2 + sin(x) — 72.

Suppose f(x) is a function for which f'(x)= % + lQ +1 and £(1)=3. Find f(x).
X

Solution First, f(x)=f (1 + % +1)dx=Inlx|- L +x+C. Then 3=f(1)=In|1|-
1+1+C=C, so C =3. Therefore f(x)=In|x|- L +x+3.

Suppose f(x) is a function for which f'(x) = —13 +x. The graph of f passes through
X
the point (2,11). Find f(x).

Solution First, f(x):f(xl3 +x) dx:—$+%+c. Now 11:f(2):—ﬁ+%+0:
—2+2+C=2+C,s0 C=11-1 = 2. Therefore f(x):—$+§+%.

Suppose an object moving on a line has velocity function v(¢) = 2¢ + 3. Find its
position function s(#), given that you happen to know s(2) =8.

Solution The position function is s(t) = [v(t)dt = [(2¢t+3)dt =t +3t+C. Then
8=5(2)=22+3.-2+C=10+C. Thus C=8-10=-2, so s(t) =t + 3¢t - 2.

A ball, tossed straight up, has a constant acceleration of —32 feet per second per
second. At time ¢ =0 its velocity is v(0) = 10 feet per second, and its position is
s(0) = 6 feet. Find the position function s(z).

Solution First, v(¢) = fa()dt = [—-32dt =—-32t+C. So v(¢) = -32¢+ C. To find
C, use the fact that velocity at time 0 is v(0) = 10 ft/sec. Thus 10 =v(0) = -32-0+C,
s0 10=C, and v(¢) = -32¢ + 10.

Next, s(t) = [v(t)dt = [(-32¢t+10)dt = —16t + 10t +C, and so s(t) = —16¢2 + 10t +C.
We just need to find C. Because the ball’s height at time # =0 is 6 feet, we have
6=s(0)=-16-02+10-0+C, which gives C = 6. Thus s(¢) = —16¢2 + 10t +6.

An object moving on the number line has velocity v(t) = 4¢3 at time ¢ seconds. At
time ¢ =1 it is at the point 4 on the line. When is the object at the point 19?

Solution The position function is s(¢) = [v(t)dt = [4t3 dt =t*+ C. To find C,
we have 4 =s(1) = 14+ C. Thus C =4-1=3, so s(¢) = t*+3. To find when the object
is at the point 19, we must solve the equation s(¢) = 19, that is, t* +3 =19. Then
t* =16 so t =2. Thus at time ¢ = 2 seconds, the object is at the point 19.
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15.

17.

19.

A helicopter is rising vertically at a rate of 32 feet per second. At the instant
it is 48 feet above the ground, a package is dropped from it. Assuming the
acceleration due to gravity is —32 feet per second per second, find the velocity at
which the package strikes ground.

Solution Here is a strategy: The acceleration a(¢) of the package is given.
Working backwards, we will try to use the given information to derive the
package’s velocity function v(¢) and position function s(¢) (i.e., its height above
ground at time ¢). Then to find the instant it strikes ground we will solve s(¢) = 0.
We will then plug this time value into v(¢) to get the velocity on impact.

Start the clock (time ¢ = 0) the moment the helicopter is 48 feet high, which
is also the instant that the package is dropped. At this instant the package’s
velocity is the velocity of the helicopter, which is 32 feet per second (straight up).
So letting v(¢) be the package’s velocity at time ¢, we have v(0) = 32.

The package’s acceleration is given as a(¢) = —32, so its velocity is v(¢) = [a(t)dt =
J—32dt =-32t+C feet per second, that is, v(t) = —32¢ + C. To find C, recall that
v(0) =32, hence 32=v(0)=-32-0+C, so C =32. Thus v(t) = —32¢+32.

The package’s height at time ¢ is s(t) = [v(¢)dt = [(-32t+32)dt = —16¢> + 32t + C.
To find C, recall that the package is 48 feet high at time ¢ = 0, so 48 = s(0) =
-16-0%+32-0+C, and hence C = 48. Therefore s(t) = —16¢2 + 32¢ + 48.

The package hits ground when it height is 0, that is when s(¢) = 0, or —16¢2 +32¢ +
48 = 0. Dividing both sides, by —16 gives t>—2t—-3 =0, or (t+1)(¢—3) = 0. This gives
two time values, # = —1 and ¢ = 3. The first is not in our interval of consideration,
so we conclude that the package strikes ground at time # = 3 seconds. At this
instant its velocity is v(3) = —-32-3 + 32 = | —64 feet per second.

A rock, propelled straight down from the top of a bridge over a river at time ¢ =0
seconds has a velocity of v(¢) = —32¢ — 5 feet per second at time ¢. The rock hits
water with a velocity of —69 feet per second. How high is the bridge?

Solution To find the time that the rock hits the water, we just have to solve
v(t) = —69, that is, —-32¢ —5 = —69. This reduces to 32¢ = 64, giving ¢t = 2. So the
rock hits the water at time ¢ = 2 seconds.

To find the bridge’s height, let s(¢) be height of the rock at time ¢. If we can
find s(#), the height of the bridge will be s(0) (the rock’s height when it’s at the
top of the bridge). Now, s(¢) = [v(t)dt = [(-32t—5)d¢t = —16t% — 5t + C. We know
s(5) = 0 since the rock has reaches the water (has height 0) at time ¢ =5. Then
0=s(5)=-16(52)-5-5+C = —425+C. Thus C = 425, and hence s(t) = —16t% -5t +425.
So the height of the bridge is s(0) = —16-02 —5-0+425 =

A block sliding down a 100—foot-long inclined plane has a constant acceleration
of 2 feet per second per second. It takes the block five seconds to slide from the
top to the bottom. What is its velocity when it reaches the bottom?
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20.

/\ 100:

Solution Here is our strategy: Let s(¢) be the block’s distance from the top
of the ramp at time ¢. Start the clock at time # = 0 when the block is at the top.
Thus s(0) = 0. The block is at the bottom of the ramp at time ¢ =5, so s(5) = 100.
We are asked for the velocity at this time, so we will construct a velocity function
v(#), and then our answer will be v(5).

The block’s acceleration is given as a(t) = 2, so the velocity is v(¢) = [a(t) dt =
J2dt=2¢t+C. We are not given an initial value for velocity that would allow us
to solve for C, so let’s integrate again to get s(¢) and see if what we already know
about s(¢) will help solve for C.

Now, s(t) = [v(t)dt = [(2t+C)dt = t?> + Ct + K, where K is a new constant. So
s)=t2+Ct+K. We have 0=s(0)=0%2+C-0+K, so K =0, and hence s(¢) = 2 + Ct.
Now use the fact s(5) = 100 to get 100 = s(5) =52+ C-5. Then C-5="75, so C = 15.

Now that we know C we can finally get the velocity function: v(¢) = 2¢ + 15. Thus
the velocity at the bottom of the ramp is v(5)=2-5+15 = | 25 feet per second.

A car has a velocity of 10 meters per second when the driver sees a stopped car
13 meters away and immediately applies the breaks. The car then de-accelerates
at a constant rate of 5 meters per second per second (that is, its acceleration is
—5 meters per second per second). At this rate, how long will it take the car to
stop? Does it stop in time?

Say the car is moving on the number line so that the stopped car is at the point
13, and the breaks are applied when the car is at the point 0, at time ¢ =0. Let
s(t) be its position function, so that s(0) =0. We are also given the information
v(0) =10.

The acceleration is given as a(t) = -5, so v(¢) = fa($)dt = [-5dt = -5t +C. So
v(t) = -5t +C. To find C note that 10 = v(0) = -5-0+C, so C = 10 and hence
v(t) = =5t +10. From this you can see that the car has zero velocity (i.e. come to
a stop) at time ¢ = 2 seconds.

To answer the second question we will find s(¢). If s(2) < 13, then the car has
stopped in time. We have s(¢) = [v(t)dt = [(-5t+10)d¢t = —-5¢2+ 10t + C. The
condition 0=s(0)=-3-0%+10-+C yields C =0, so s(¢) = —2¢2 + 10¢. The car stops
at time ¢ =2, and at this time it is at the point s(2) = —g -22410-2=10. It is still
3 meters away from the stopped car, so it stopped in time.



