
CHAPTER 35

The Mean Value Theorem

This chapter’s topic is called the Mean Value Theorem, or MVT. The MVT
is not something (like, say, the chain rule) that you will use daily, but it

does have some important consequences that we will address in Section 35.1.

The MVT is easy to visual-
ize. It concerns a function
f (x) that is defined on a closed
interval [a,b], as shown on
the right. We’re doing calcu-
lus, so say that f (x) is di�er-
entiable, at least on (a,b), and
continuous on [a,b].

Draw a line segment between
points

°
a, f (a)

¢
and

°
b, f (b)

¢
.

This line segment has slope
m = rise

run
= f (b)° f (a)

b°a
.

From this picture you would
expect that at some point the
tangent to y = f (x) has the
same slope as the line seg-
ment. In other words, there
is a number c between a and
b for which f 0(c)= f (b)° f (a)

b°a . In
fact, this is exactly what the
mean value theorem says.
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a b

y= f (x)

x

y
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f (a)

f (b) y= f (x)

m = f (b)° f (a)
b°a

x

y

a b

f (a)

f (b) y= f (x)

m = f (b)° f (a)
b°a

c

m = f 0(c)

Fact 35.1 (Mean Value Theorem) If f (x) is continuous on [a,b] and
di�erentiable on (a,b), then there is a number c in (a,b) for which

f 0(c)= f (b)° f (a)
b°a

.



401

Example 35.1 Consider f (x)= x2 +1 on the interval [a,b]= [°1,2], which
is graphed below. Here f (b)° f (a)

b°a = f (2)° f (°1)
2°(°1) = 5°2

3 = 1, so the mean value
theorem states that there is a number c between °1 and 2 for which f 0(c)= 1.

x

y f (x)= x2 +1

2°1 1
2

m = f (2)° f (°1)
2° (°1)

= 5°2
3

= 1

m = f 0
°1
2

¢
= 1

This number c for which f 0(c) = 1 is easy to find. Because f 0(x) = 2x, the
equation f 0(c) = 1 yields 2c = 1, so c = 1

2 . The tangent line at x = c = 1
2 is

shown above, and indeed its slope is f 0
°1

2
¢
= 2 · 1

2 = 1.

Check your understanding by working Exercise 1.
Again, the mean value theorem asserts that if f is continuous on [a,b]

and di�erentiable on (a,b) then there is a number c in (a,b) for which
f 0(c) = f (b)° f (a)

b°a . It is possible that there is more than one such number c.
For the function graphed below there happen to be three such numbers c.
The mean value theorem guarantees that there is always at least one.

f (b)

f (a)

ba ccc

m = f 0(c)

m = f (b)° f (a)
b°a

The mean value theorem can be proved easily with familiar techniques
of finding global extrema. We will do this at the end of the chapter. But first
we’ll do one more example and then discuss some important consequences
of the MVT.
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It so happens that in the situations in which the mean value theorem
is most useful, there may not be enough information to actually find the
number c (as we did in Example 35.1). The importance of the mean value
theorem is that it guarantees that such a number c exists, even if we can’t
actually find it. Such is the case in the next example.

Example 35.2 The purpose of this example is to convince you that—even
long before you studied calculus—you’ve had an intuitive, ingrained under-
standing of the mean value theorem.

In this thought experiment, imagine driving 30 miles in 20 minutes (1/3 hour)
along a straight road. Say the speed limit is 70 mph. The question we will
ask is this: During the trip, did you ever exceed the speed limit?

Intuition says yes: Your average velocity for the trip was 30 miles
1
3 hour

= 90 mph.

Thus at some point you were driving 90 mph or higher. You were speeding.

This idea—that your average (or mean) velocity equals your exact velocity at
some instant—is really just an instance of the mean value theorem. To see
how, let f (t) be the position function, giving your distance from the starting
point at time t. Under this setup, we know that your velocity at time t is
f 0(t) mph.

30 miles

t=0 t=1
3

f (t)
vel = f 0(t)

Notice that f (t) is defined for times 0 ∑ t ∑ 1/3, that is, f is defined on the
interval [a,b] = [0,1/3]. The mean value theorem says that for some time
t = c in [0,1/3]

f 0(c)= f (b)° f (a)
b°a

=
f ( 1

3 )° f (0)
1
3 °0

= 30°0
1
3 °0

= 90 mph.

(exact velocity at time t=c)
(average [mean] velocity of trip)

Thus the mean value theorem simply asserts that the average rate of change
of f on [a,b] equals exact rate of change at some c.
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35.1 Consequences of the Mean Value Theorem
Although the mean value theorem itself will not play a big role in Calculus I,
it does have two significant consequences, which we now discuss.

Both of these consequences are very believable, and should come as
no surprise. However, the MVT nails them down beyond the shadow of a
doubt. But if the consequences seem obvious to you, there’s no harm in
skipping their proofs. It is more important to understand and internalize
the consequences themselves, rather than the fine points of their proofs.

The first consequence concerns functions f (x) for which f 0(x) = 0. We
know that if f (x) is a constant function, then its derivative is zero. But
what about the other way around? If f 0(x)= 0, then must f (x) be a constant
function? Our first MVT consequence says yes.

Fact 35.2 If f (x) is di�erentiable on an interval (a,b), and f 0(x)= 0 for
all x in (a,b), then f is a constant function f (x)= C on (a,b).

Proof. Suppose f (x) meets the stated conditions. Fix a number d in (a,b).
Let C = f (d). We’ll show below that f (x)= C for any x in (a,b).

So take any x in (a,b). Assume first that x is to the left of the number d.
Because f is di�erentiable on (a,b) it is also di�erentiable on the interval
(x,d), and continuous on [x,d] (because di�erentiability implies continuity).
By the MVT, there is a number c in [x,d] with

f 0(c) = f (d)° f (x)
d° x

.

Because f 0(x)= 0 on (a,b), we know f 0(c)= 0, and the above becomes

0 = f (d)° f (x)
d° x

0 · (d° x) = f (d)° f (x)

0 = f (d)° f (x)

f (x) = f (d) = C.

We’ve just shown that f (x) = C for any x in (a,b) that is to the left of d.
If x is to the right of d, just repeat the above argument, replacing the
interval (x,d) with (d, x). Again, we get f (x)= C. Á

In short, Fact 35.2 says: If the derivative of a function is zero, then the
function is a constant. We sometimes downplay the interval, leaving it
unspecified or regarding it simply as (a,b)= (°1,1)=R if appropriate.
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Our second significant consequence of the mean value theorem involves
two functions that have the same derivative. For example, consider the
functions f (x) and g(x) graphed below. At any point x they have equal slopes,
that is f 0(x)= g0(x).

x

y

y= f (x)

y= g(x)

x

C

Thus the rise and fall of f (x) echos that of g(x); the graph of f (x) looks
just like the graph of g(x) except that it’s slightly higher. You would guess
that f (x) = g(x)+C for some constant C. That is exactly what our second
MVT consequence says.

Fact 35.3 Suppose two functions f (x) and g(x) are di�erentiable on an
interval (a,b). If f 0(x)= g0(x) for all x in (a,b), then f (x)= g(x)+C for some
constant C.

Proof. Suppose f 0(x) = g0(x) for all x in (a,b). Let h(x) = f (x)° g(x). Then
h0(x) = f 0(x)° g0(x) on (a,b). Because f 0(x) = g0(x), this becomes h0(x) = 0
on (a,b). Then by Fact 35.2, h(x) = C for some constant C. This means
f (x)° g(x)= C, so f (x)= g(x)+C. Á

In short, Fact 35.3 says: Two functions with the same derivative di�er
by a constant. Again, we sometimes downplay the interval, regarding as
unspecified or simply as (a,b) = (°1,1) = R. But technically the interval
has significance, because not all functions have domain R.

It is also important that f and g be defined on a single interval (a,b).
If they are defined on more than one interval, then Fact 35.3 may break
down. (See this chapter’s Exercise 6.)

Likewise if f is not defined on a single interval (a,b), then Fact 35.2
may not hold. Exercise 5 asks for an example of function f with domain
(°1,0)[ (0,1), such that f is non-constant but f 0(x)= 0.
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35.2 Proof of the Mean Value Theorem
So far in this chapter we’ve stated the mean value theorem, explained its
meaning and stated two of its significant consequences. We have not yet
actually proved the MVT, and we will do so now. However, if you feel that
the MVT and its consequences are obvious (or if you’re content to accept it
as fact), then you can skip this section.

Our proof will involve a preliminary result known as Rolle’s theorem. In
essence, Rolle’s theorem says that if a function g(x) has the property that
g(a)= g(b) then there is a number c between a and b for which g0(c)= 0. (See
the picture below. The graph of g starts at height g(a), and moves higher.
But it has to go back down to height g(b), so it must “top out” at some c
where g0(c)= 0.)

g(a)= g(b)

ba

y= g(x)

c

g0(c)= 0

Fact 35.4 (Rolle’s Theorem)
Suppose g(x) is continuous on [a,b], and di�erentiable on (a,b).
If g(a)= g(b), then there is a number c in (a,b) for which g0(c)= 0.

Proof. Let g be as stated, and suppose g(a) = g(b). By the extreme value
theorem (Fact 33.1), g has both a global maximum and minimum on [a,b].

If a global maximum or minimum occurs at a point c in (a,b), then c
must be a critical point of g. This means that either g0(c) is undefined,
or g0(c) = 0. But g is di�erentiable on (a,b), so g0(c) cannot be undefined.
Therefore g0(c)= 0.

On the other hand, if neither the global maximum nor minimum occurs
inside (a,b), then the maximum occurs at one endpoint of [a,b] and the min-
imum at the other. But since g(a)= g(b), this means the absolute maximum
and absolute minimum are equal, so g must be a constant function on [a,b].
Then f 0(c)= 0 for any c in (a,b). Á

The mean value theorem follows quickly from Rolle’s theorem. For
convenience re restate it below.
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Fact 35.1 (Mean Value Theorem)
If f (x) is continuous on [a,b] and di�erentiable on (a,b), then there is a
number c in (a,b) for which f 0(c)= f (b)° f (a)

b°a
.

Proof. Say f (x) is continuous on [a,b] and di�erentiable on (a,b). We now
explain why the stated number c must exist.

x

y

a b

f (a)

f (b)
y= f (x)

y= L(x)

m = f (b)° f (a)
b°a

Consider the straight line passing through the points
°
a, f (a)

¢
and

°
b, f (b)

¢
.

(See the diagram above.) This line is the graph of a linear function L(x).
The derivative of L(x) equals the slope of the line, that is,

L0(x) = f (b)° f (a)
b°a

(§)

for any x. Now let g(x) be the function

g(x) = f (x)°L(x).

Notice that g is di�erentiable on (a,b) because both f and L are, and g is
continuous on [a,b] because both f and L are. Also notice that g(a)= 0= g(b).
Therefore, g meets the conditions of Rolle’s theorem, which asserts that
there is a number c in (a,b) for which

g0(c) = 0.

Because g0(c)= f 0(c)°L0(c), the above equation becomes

f 0(c)°L0(c) = 0

f 0(c)° f (b)° f (a)
b°a

= 0 (by (§))

f 0(c) = f (b)° f (a)
b°a

.

This proves the mean value theorem. Á
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Exercises for Chapter 35
1. Consider the function f (x)= x3 °3x on the interval [0,3]. Find the number c in

(0,3) guaranteed by the mean value theorem.

2. Consider the function ln(x) on the interval [1,5]. Find the number c in (1,5)
guaranteed by the mean value theorem.

3. Consider the function f (x)= x3 ° x on the interval [°2,3]. Find all numbers c in
(°2,3) guaranteed by the mean value theorem.

4. The record for weight loss in a human is a drop from 487 pounds to 130 pounds
over an eight month period. Use the mean value theorem to show that the rate
of weight loss exceeded 44 pounds per month at some time during the eight
months.

5. Find an example of a function f (x), with domain (°1,0)[(0,1), for which f 0(x)= 0
but f (x) is not a constant function. (This example shows that Fact 35.2 can fail
if f is not defined on a single interval (a,b).)

6. Find two functions f (x) and g(x), each with domain (°1,0)[ (0,1), for which
f 0(x)= g0(x), but f (x) 6= g(x)+C. (This example shows that Fact 35.3 can fail if f
and g are not defined on a single interval (a,b).)

Solutions for Chapter 35
1. Consider f (x)= x3 °3x on [0,3]. Find the number c guaranteed by the MVT.

Solution We seek a number c such that f 0(c) = f (b)° f (a)
b°a = f (3)° f (0)

3°0 = 18°0
3 = 6.

Since f 0(x) = 3x2 °3, we seek a c for which 3c2 °3 = 6, which reduces to c2 = 3.
Therefore c =±

p
3. Of these two values, only c =

p
3 is in [0,3]. Therefore c =

p
3

is the number in (0,3) for which f 0(c)= f (3)° f (0)
3°0 .

3. Consider f (x)= x3 ° x on [°2,3]. Find all numbers c in (°2,3) guaranteed by the
mean value theorem.
Solution We seek a number c such that f 0(c)= f (b)° f (a)

b°a = f (3)° f (°2)
3°(°2) = 24°(°6)

5 = 6.
Since f 0(x) = 3x2 °1, we seek a c for which 3c2 °1 = 6, which reduces to c2 = 7

3 .
Therefore c =±

q
7
3 . Both of these numbers are in [°2,3]. They are the numbers

c in (°2,3) for which f 0(c)= f (3)° f (°2)
3°(°2) .

5. Find an example of a function f (x), with domain (°1,0)[(0,1), for which f 0(x)= 0
but f (x) is not a constant function.

Solution Let f (x)=
(

5 if x < 0
3 if x > 0.

This has domain (°1,0)[ (0,1). It is not a constant function, but f 0(x)= 0.


