Increase-Decrease

Part 3 of this course dealt with derivatives of functions: what they are, how to compute them, what they mean and how to work with them. In Part 4 the focus now shifts to how derivatives are useful. In Chapters 1 through 34 the theme is what the derivative f^{\prime} tells us about the function f. Here the primary interest will be the behavior of some function f, and the derivative is a tool that gives information about f.

In this chapter we examine one of the most immediate things f^{\prime} tells us about f : where f increases and where f decreases.

Definition 30.1 Suppose $f(x)$ is a function defined on some interval I.

- $f(x)$ increases on I if x moving to the right on I causes $f(x)$ to increase. (That is, if x and x^{\prime} are on I and $x^{\prime}>x$, then $f\left(x^{\prime}\right)>f(x)$.)
- $f(x)$ decreases on I if x moving to the right on I causes $f(x)$ to decrease. (That is, if x and x^{\prime} are on I and $x^{\prime}>x$, then $f\left(x^{\prime}\right)<f(x)$.)

For example, the function f below increases on the interval (a, b) and it decreases on the interval (b, c).

For another example, your familiarity with the parabola $f(x)=x^{2}$ tells you that this function decreases on $(-\infty, 0)$ and increases on $(0, \infty)$.

A function's derivative tells where the function increases and where it decreases. Consider the function $f(x)$ graphed on the previous page, shown again below. Notice that, as $f(x)$ increases on (a, b), the slopes of its tangent lines are positive. And as $f(x)$ decreases on (b, c), the slopes of its tangent lines are negative. (We have called attention to this by putting a row of ++++ or ---- to show where $f^{\prime}(x)$ is positive or negative.)

So positive derivative means the function increases; negative derivative means the function decreases. Let's record this very useful, far-reaching (and obvious!) fact.

Fact 30.1 Suppose $f(x)$ is a function defined on some interval I.

- $f(x)$ increases on I if $f^{\prime}(x)>0$ for all x in I.
- $f(x)$ decreases on I if $f^{\prime}(x)<0$ for all x in I.

Example 30.1 Find the intervals on which the function $f(x)=x^{2}-4 x+5$ increases/decreases.

Solution Fact 1.1 says that we can find an answer by looking at the derivative, which is $f^{\prime}(x)=2 x-4=2(x-2)$. By inspection, $f^{\prime}(x)=2(x-2)$ is negative when $x<2$, and it is positive when $x>2$. This means $f^{\prime}(x)$ is positive on $(2, \infty)$, and negative on $(-\infty, 2)$.
Answer: The function $f(x)=x^{2}-4 x+5$ decreases on the interval $(-\infty, 2)$ and increases on the interval $(2, \infty)$.
We got this answer from looking at the derivative alone, not a graph. To underscore that our answer is correct the graph shown on the right.

Example 30.2 Find the intervals on which the function $f(x)=\sqrt[3]{x+1}^{2}-2$ increases/decreases.

Solution Fact 1.1 says that we can get an answer by looking at the sign of the derivative. SInce, $f(x)=(x+1)^{2 / 3}-2$, the generalized power rule gives

$$
f^{\prime}(x)=\frac{2}{3}(x+1)^{-1 / 3} \frac{d}{d x}[x+1]=\frac{2}{3 \sqrt[3]{x+1}} .
$$

The sign of $f^{\prime}(x)$ is controlled by the cube root $\sqrt[3]{x+1}$ in the denominator. Notice that $\sqrt[3]{x+1}$ is negative when $x+1<0$, and it is positive when $x+1>0$. In other words, $\sqrt[3]{x+1}$ is negative when $x<-1$, and it is positive when $x>-1$. Therefore $f^{\prime}(x)=\frac{2}{3 \sqrt[3]{x+1}}$ is negative when $x<-1$, and positive when $x>-1$.
Answer: The function $f(x)=\sqrt[3]{x+1}^{2}-2$ decreases on the interval $(-\infty,-1)$ (where $f^{\prime}(x)$ is negative) and it increases on $(-1, \infty)$ (where $f^{\prime}(x)$ is positive).

To check this answer let's draw a quick sketch of the graph of $f(x)=\sqrt[3]{x+1}^{2}-2$. It is the graph of $y=\sqrt[3]{x}$ moved 1 unit left and 2 units down. (See above.) Indeed this graph decreases on $(-\infty,-1)$ and increases on $(-1, \infty)$.

Notice that the graph of $f(x)$ has a cusp at -1 . This makes sense because $f^{\prime}(-1)=-\frac{2}{3 \sqrt[3]{-1+1}}=-\frac{2}{0}$ does not exist, so $f(x)$ has no tangent at $x=-1$.

Examples 1.1 and 1.2 illuminate a very significant fact about what happens at the point that a function switches from decreasing to increasing (or increasing to decreasing).

In Example 1.1, $f(x)$ stopped decreasing and started increasing at $x=2$, and $f^{\prime}(2)=0$. The function "bottomed out" at 2 with a horizontal tangent.

In Example 1.2, $f(x)$ stopped decreasing and started increasing at $x=-1$, and $f^{\prime}(-1)$ was not defined. The function "hits bottom with a kink" at -1 .

These two examples illustrate the two possibilities that signal a switch in increase/decrease. Draw the graph of any continuous $f(x)$, like the one in Figure 1. It will be the case that whenever $f(x)$ switches increase/decrease at some number c, then either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist.

Figure 30.1. If a function $f(x)$ changes from decreasing to increasing (or increasing to decreasing) at a number $x=c$, then either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is not defined. Such a number c is called a critical point for $f(x)$.

The reason for this should be intuitively clear: Suppose that $f(x)$ switches increase/decrease at $x=c$. If it happened that $f^{\prime}(c)$ were positive, then $f(x)$ would continue rising through c. If $f^{\prime}(c)$ were negative, then $f(x)$ would continue falling through c. Because neither of these two alternatives holds, we conclude that $f^{\prime}(c)$ is neither positive nor negative. There are only two ways this can happen: either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ simply doesn't exist.

So the values $x=c$ that make a function's derivative zero or undefined are going to play an important role. They are called critical points.

Definition 30.2 A number c in the domain of a function f is called a critical point for f if either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is not defined.

We summarize our observations as the following fact.
Fact 30.2 If a function $f(x)$ switches from increasing to decreasing (or decreasing to increasing) at a number $x=c$, then c is a critical point for $f(x)$.

With this we have a simple procedure to find the intervals on which a function increase or decreases. (We will assume that any function f under discussion here is differentiable on its domain, except possibly at a discrete set of points at which its derivative is not defined.)

To find the intervals on which a function f increases or decreases

1. Find all critical points of the function.
2. The critical points divide the function's domain into a set of intervals.
3. For each interval, check if $f^{\prime}(x)>0$. If so, f increases on this interval. Otherwise, if $f^{\prime}(x)<0$, then f decreases on this interval.

Example 30.3 Find the intervals on which $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+24$ is increasing/decreasing.

Solution The first step is to find the critical points, the values of x that make the derivative zero or undefined. To find them we must examine the derivative, $f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x$. This polynomial is defined for all real x, so there are no critical points that make $f^{\prime}(x)$ undefined. To find the critical points that make $f^{\prime}(x)$ zero, we solve the equation $f^{\prime}(x)=0$:

$$
\begin{aligned}
12 x^{3}-12 x^{2}-24 x & =0 \\
12 x\left(x^{2}-x-2\right) & =0 \\
12 x(x-2)(x+1) & =0
\end{aligned}
$$

So the derivative factors as $f^{\prime}(x)=12 x(x-2)(x+1)$, and we can see that the critical points are $x=0, x=2$ and $x=-1$. They divide the number line into four intervals, as shown in the diagram below.

For each factor of the derivative, we indicate the intervals on which it is negative (-) or positive (+). For example, the factor $12 x$ is negative on the interval $(-\infty, 0)$ and positive on $(0, \infty)$. Once this is done for all factors, we can read off the sign of $f^{\prime}(x)$ for each of the four intervals. For example, on $(-\infty,-1), f^{\prime}(x)$ is a product of three negatives, so it is negative (-). From this chart we can read off our answer.
Answer: $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+24$ increases on the intervals $(-1,0)$ and $(2, \infty)$. It decreases on the intervals $(-\infty,-1)$ and $(0,2)$.

Note: our final answer does not involve $f^{\prime}(x)$ at all. The derivative was just a tool used to get the answer

The function is sketched on the right. Notice the zero slope at the critical points.

Example 30.4 Find the intervals on which $f(x)=3 x^{4}-4 x^{3}-6 x^{2}+12 x+18$ is increasing/decreasing.

Solution The first step is to find the critical points, and to find them we must examine the derivative, $f^{\prime}(x)=12 x^{3}-12 x^{2}-12 x+12$. This polynomial is defined for all real x, so there are no critical points that make $f^{\prime}(x)$ undefined. To find the critical points that make $f^{\prime}(x)$ zero, we solve the equation $f^{\prime}(x)=0$:

$$
\begin{aligned}
12 x^{3}-12 x^{2}-12 x+12 & =0 \\
12\left(x^{3}-x^{2}-x+1\right) & =0 \\
12\left(x^{2}(x-1)-(x-1)\right) & =0 \\
12\left(x^{2}-1\right)(x-1) & =0 \\
12(x+1)(x-1)(x-1) & =0 \\
12(x+1)(x-1)^{2} & =0
\end{aligned}
$$

So the derivative factors as $f^{\prime}(x)=12(x+1)(x-1)^{2}$, and the critical points are $x=-1$, and $x=1$. They divide the number line into three intervals, as shown in the diagram below.

As indicated, the factor $12(x+1)$ is negative for $x<-1$ and positive for $x>-1$. But the factor $(x-1)^{2}$ is never negative, because it is squared. Therefore, the derivative $f^{\prime}(x)=12(x+1)(x-1)^{2}$ is negative when $x<-1$, and it is positive when $x>-1$.
Answer: $f(x)=3 x^{4}-4 x^{3}-6 x^{2}+12 x+18$

$$
f(x)=3 x^{4}-4 x^{3}-6 x^{2}+12 x+18
$$

decreases the interval $(-\infty,-1)$ and increases on $(-1,1)$ and $(1, \infty)$.

Notice how the derivative does not change signs at $x=1$, even though $f^{\prime}(1)=0$. The function $f(x)$ (graphed on the right) rises before getting to $x=1$, then levels out at $x=1$, then continues rising. Given this, it is allowable to say that $f(x)$ increases on the interval $(-1, \infty)$.

Example 30.5 Find the intervals on which the function $f(x)=e^{(3 \sqrt[3]{x}-4 x)}$ is increasing/decreasing.
Solution The first step is to find all critical points, and this involves examining $f^{\prime}(x)$. By the chain rule (or generalized exponential rule),

$$
f^{\prime}(x)=\frac{d}{d x}\left[e^{\left(3 \sqrt[3]{x^{2}}-4 x\right)}\right]=e^{(3 \sqrt[3]{x}-4 x)} \frac{d}{d x}\left[3 \sqrt[3]{x^{2}}-4 x\right]=e^{(3 \sqrt[3]{x}-4 x)}\left(\frac{2}{\sqrt[3]{x}}-4\right)
$$

From this we can see that $x=0$ is a critical point, for $f^{\prime}(0)$ involves division by zero, so $f^{\prime}(0)$ is not defined. But $f^{\prime}(x)$ is defined for all other x, so $x=0$ is the only critical point of $f(x)$ that makes $f^{\prime}(x)$ undefined. Any other critical point will make $f^{\prime}(x)$ zero, so to find them we solve the equation $f^{\prime}(x)=0$:

$$
e^{(3 \sqrt[3]{x}-4 x)}\left(\frac{2}{\sqrt[3]{x}}-4\right)=0
$$

Since e to any power is positive, we can divide both sides of this equation by the nonzero expression $2 e^{\left(3 \sqrt[3]{x}^{2}-4 x\right)}$, getting

$$
\begin{aligned}
\frac{1}{\sqrt[3]{x}}-2 & =0 \\
\frac{1}{\sqrt[3]{x}} & =2 \\
\frac{1}{2} & =\sqrt[3]{x} \\
x & =\frac{1}{8}
\end{aligned}
$$

Thus we have just two critical points $x=0$ and $x=\frac{1}{8}$. These divide the domain of f into three intervals, $(-\infty, 0),\left(0, \frac{1}{8}\right)$ and $\left(\frac{1}{8}, \infty\right)$.

An alternative approach to finding the sign of $f^{\prime}(x)$ on these intervals is to select a "test point" in each interval and plug it into $f^{\prime}(x)$. For example:

- 1 is in $\left(\frac{1}{8}, \infty\right)$, and $f^{\prime}(1)=e^{(3-4)}\left(\frac{2}{\sqrt[3]{1}}-4\right)<0$, so $f^{\prime}(x)$ is negative on $\left(\frac{1}{8}, \infty\right)$.
- -1 is in $(-\infty, 0)$, and $f^{\prime}(-1)=e^{(-3+4)}\left(\frac{2}{\sqrt[3]{-1}}-4\right)<0$, so $f^{\prime}(x)$ is negative on $\left(\frac{1}{8}, \infty\right)$.
- $\frac{1}{27}$ is in $\left(0, \frac{1}{8}\right)$, and $f^{\prime}\left(\frac{1}{27}\right)>0$, so $f^{\prime}(x)$ is positive on $\left(0, \frac{1}{8}\right)$.

Answer: The function $f(x)=e^{(3 \sqrt[3]{x}-4 x)}$ increases on ($0, \frac{1}{8}$), and decreases on $(-\infty, 0)$ and $\left(\frac{1}{8}, \infty\right)$.

The function $f(x)=e^{(3 \sqrt[3]{x}-4 x)}$ has been sketched with a graphing utility above. Notice that there is a cusp at the critical point 0 , where $f^{\prime}(0)$ is not defined. And the slope is zero at the critical point $1 / 8$, where $f^{\prime}(1 / 8)=0$.

In all of this chapter's examples the domain of the function has been all real numbers, $(-\infty, \infty)$, and the critical points split $(-\infty, \infty)$ into smaller intervals. By contrast, the function $f(x)=\frac{1}{x}+x$ from Example 5 below has domain $(-\infty, 0) \cup(0, \infty)$, and its critical points will further split these two intervals into smaller intervals. Test your understanding by working this exercise.

Exercises for Chapter 1

1. Find the intervals on which $y=x^{4}-8 x^{2}+16$ increases/decreases.
2. Find the intervals on which $y=x^{3}-27 x+36$ increases/decreases.
3. Find the intervals on which $f(x)=(x-2) e^{x}$ increases/decreases.
4. Find the intervals on which $y=\sqrt{x}-x$ increases/decreases.
5. Find the intervals on which $y=\frac{1}{x}+x$ increases/decreases.
6. Find the intervals on which $y=e^{x}-x$ increases/decreases.
7. Find the intervals on which $y=\ln \left(x^{2}+10 x+26\right)$ increases/decreases.
8. Find the intervals on which $y=\tan ^{-1}\left(x^{2}+10 x+24\right)$ increases/decreases.
9. Find the intervals on which $y=\tan ^{-1}(\sqrt[3]{x}+3)$ increases/decreases.
10. Find the intervals on which $y=x \ln |x|$ increases/decreases.

Exercises Solutions for Chapter 1

1. Find the intervals on which $y=x^{4}-8 x^{2}+16$ increases/decreases.

The derivative is $f^{\prime}(x)=4 x^{3}-16 x=4 x\left(x^{2}-4\right)-4 x(x-2)(x+2)$. From this we can see that there are three critical points, $0,-2$ and 2 . These divide the domain $(-\infty, \infty)$ of f into four intervals, $(-\infty,-2),(-2,0),(0,2)$ and $(2, \infty)$.
Let's pick a test point a in each interval to determine the sign of f^{\prime} on that interval. This is tabulated in the table below.

Interval	$(-\infty,-2)$	$(-2,0)$	$(0,2)$	$(2, \infty)$
Test point a	-3	-1	1	3
$f^{\prime}(a)$	$f^{\prime}(-3)=-60$	$f^{\prime}(-1)=12$	$f^{\prime}(1)=-12$	$f^{\prime}(3)=60$
Sign of $f^{\prime}(a)$	-	+	-	+
f is	decreasing	increasing	decreasing	increasing

Answer: f increases on $(-2,0)$ and $(2, \infty)$, and decreases on $(\infty,-2)$ and $(0,2)$.
3. Find the intervals on which $f(x)=(x-2) e^{x}$ increases/decreases.

By the product rule, the derivative is $f^{\prime}(x)=1 \cdot e^{x}+(x-2) e^{x}=e^{x}(1+x-2)=e^{x}(x-1)$. Since e^{x} is positive for any x, we can just look at this and see that there is only one critical point, $x=1$. This critical point divides the domain $(-\infty, \infty)$ of f into two intervls $(-\infty, 1)$ and $(1, \infty)$. By inspection, $f^{\prime}(x)$ is negative on $(-\infty, 1)$, and positive on $(1, \infty)$.
Answer: f decreases on $(-\infty, 1)$ and increases on $(1, \infty)$.
5. Find the intervals on which $y=\frac{1}{x}+x$ increases/decreases.

Observe that the domain of this function is $(-\infty, 0) \cup(0, \infty)$. Its derivative is $\frac{d y}{d x}=-\frac{1}{x^{2}}+1$, and this is zero if $x= \pm 1$. The critical points $x= \pm 1$ divide the domain into intervals $(-\infty,-1),(-1,0),(0,1)$ and $(1, \infty)$. Let's pick a test point a in each interval to determine the sign of f^{\prime} on that interval. This is tabulated in the table below.

Interval	$(-\infty,-1)$	$(-1,0)$	$(0,1)$	$(1, \infty)$
Test point a	-2	$-1 / 2$	$1 / 2$	2
$f^{\prime}(a)$	$f^{\prime}(-2)=3 / 4$	$f^{\prime}(-1 / 2)=-3$	$f^{\prime}(1 / 2)=-3$	$f^{\prime}(2)=3 / 4$
Sign of $f^{\prime}(a)$	+	-	-	+
f is	increasing	decreasing	decreasing	increasing

Answer: f decreases on $(-1,0)$ and $(1,0)$, and increases on $(-\infty,-1)$ and $(1, \infty)$.
7. Find the intervals on which $y=\ln \left(x^{2}+10 x+26\right)$ increases/decreases.

Notice that $x^{2}+10 x+26=\left(x^{2}+10 x+25\right)+1=(x+5)^{2}+1>0$, so $\ln \left(x^{2}+10 x+26\right)$ is defined for all x. Hence the domain of this function is $(-\infty, \infty)$. The derivative is $\frac{d y}{d x}=\frac{2 x+10}{x^{2}+10 x+26}=\frac{2(x+5)}{x^{2}+10 x+26}$, and the only critical point is $x=-5$. This splits the domain into two intervals $(-\infty,-5)$ and $(-5, \infty)$.

Interval	$(-\infty,-5)$	$(-5, \infty)$
Test point a	-6	0
$f^{\prime}(a)$	$f^{\prime}(-6)=\frac{-2}{2}<0$	$f^{\prime}(0)=\frac{10}{26}$
Sign of $f^{\prime}(a)$	-	+
f is	decreasing	increasing

Thus the function decreases on $(-\infty,-5)$ and increases on $(-5, \infty)$.
9. Find the intervals on which $y=\tan ^{-1}(\sqrt[3]{x}+3)$ increases/decreases.

The derivative is $\frac{d y}{d x}=\frac{1}{1+\left(\sqrt[3]{x}^{2}+3\right)^{2}} \cdot \frac{2}{3 \sqrt[3]{x}}$. This is never zero, but it is undefined for $x=0$. Thus $x=0$ is the only critical point, splitting the domain into two intervals $(-\infty, 0)$ and $(0, \infty)$. The derivative is negative on the first interval and positive on the second. Therefore the function decreases on $(-\infty, 0)$ and increases on $(0, \infty)$.

