
CHAPTER 3

Trigonometric Functions

Recall that a function expresses a relationship between two variable
quantities. Trigonometric functions are special kinds of functions that

express relationships between the angles of right triangles and their sides.
For example, consider the right triangle (with hypotenuse 1) drawn below.
The relationship between the side length y and the angle µ is given by the
function y= sin(µ).

µ

9

=

;

y= sin(µ)1

You have studied trigonometric functions before but may need a quick
review to attain the fluency that this course demands. This chapter summa-
rizes the main definitions and properties of trigonometric functions. Even
if you are thoroughly familiar with this topic it is still a good idea to scan
this material to glean the notation and conventions used in this text.

3.1 The Trigonometric Functions
Trigonometric functions are actually very simple. Mastering them requires
knowledge of only two things: The Pythagorean theorem and the unit circle.

Pythagorean Theorem: If a right triangle has legs of lengths x and y,
and hypotenuse of length z, then it is always the case that x2 + y2 = z2.

yz

x

Conversely, if the sides of a triangle obey the equation x2 + y2 = z2, then the
triangle is a right triangle and the hypotenuse has length z.
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The unit circle is the circle of radius 1 that
is centered at the origin. It is the graph of the
equation x2 + y2 = 1. That is, it is the set of all
points (x, y) on the plane for which x2 + y2 = 1.
To see why this is so, take any point (x, y) on
the circle. It is at distance 1 from the origin.
By the Pythagorean theorem, the point (x, y)
satisfies x2 + y2 = 12.

Because it has radius 1, the unit circle has diameter 2. Its circumference,
which is º times the diameter, is therefore 2º.

y
1

x

(x, y)

The unit circle is important because it is a natural protractor for measur-
ing angles; but instead of measuring them in degrees, it measures in what
are called radians. To understand this, say we want to measure the angle
in Figure 3.1. One way to do this is to place a protractor on the angle and
get a measurement, in this case 45 degrees. On the other hand, we could
place the unit circle on the angle as shown on the right of Figure 3.1. Now
measure the angle not by degrees, but by the arc length along the circle
between the two rays of the angle. As 45± is one-eighth of the way around
the circle, this arc length is one-eighth of the circumference of the circle,
that is, 1

82º= º
4 . We say that º

4 is the radian measure of the angle. In this
way any angle has a radian measure, namely the arc length of the part of
the unit circle that is enclosed between the angle’s rays.
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Figure 3.1. Angles can be measured with a protractor (in degrees) or with the
unit circle (in radians).
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Radians are considered preferable to degrees. There is a good reason for
this. The protractor in Figure 3.1 is a man-made device; the fact that there
are 360 degrees around circle is a mere arbitrary contrivance of the human
mind. Degree measurement was arranged this way because lots of numbers
go evenly into 360. By contrast, the unit circle is a universal mathemat-
ical principle. Consequently, many equations will work out neatly—and
naturally—when angles are expressed in radians. For this reason we al-
most always use radians in calculus, even though we may sometimes think
informally in degrees.

Figure 3.2 shows some angles that arise frequently in computations.
The left side shows angles that are integer multiples of 45±, or º/4 radians.
From this we see that 90± (twice 45±) is º

2 (twice º
4 ) radians. Similarly 135±

is 3º
2 radians, and 180± is º radians, etc.
If we go all around the unit circle (360±), we have traversed its entire

circumference, that is, 2º radians. Thus 0 and 2º represent the same point
on the unit circle. This is not to say that 0= 2º (which is obviously untrue)
but rather that traversing around the circle 2º radians brings us to the
same point as traversing 0 radians. Similarly, traversing º

2 radians brings
us to the same point as º

2 +2º= 5º
2 radians, etc.

The right side Figure 3.2 shows multiples of 30±. Because 30± is one
twelfth of 360±, the radian measure of a 30± angle is one twelfth the cir-
cumference 2º of the unit circle, that is, 30± is 1

122º= º
6 radians. The figure

shows other multiples of 30±. Likewise, 60± (twice 30±) is 2º
6 = º

3 , etc. Recall
that we associate traversing counter-clockwise around the circle with posi-
tive radian measure. Traversing clockwise is interpreted as negative radian
measures, as indicated in the figure. Thus (for instance) º and °º bring us
to the same point on the unit circle, as do 7º

6 and °5º
6 .
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º
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Figure 3.2. Some common angles (multiples of 45± and 30±) in radians.
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It is of utmost importance to internalize (not just memorize) the dia-
grams in Figure 3.2. They provide a mental model that allows us to quickly
convert between degrees and radians for angles that are integer multiples
of 45 or 30 degrees. We will need to do this often. On occasion we may need
to convert other angles, and again there is a simple mental model that can
be used for this.

It is easy convert between radians and degrees by keeping the following
picture in mind. The angle has degree measure “deg” and radian measure
“rad.” Since 180 degrees is º radians, the following ratios are equal:

deg
180

= rad
º

.

Solving two ways, we get

deg= rad180
º

,

rad=deg º

180
.

deg
rad

180
º

Example 3.1 Convert 40± and 120± to radians, and º/5 radians to degrees.

By the above formula, a 40± degree angle has radian measure 40
º

180
= 2º

9
.

Also 120± is 120
º

180
= 2º

3
radians. (This also follows very simply from the

right side of Figure 3.2.) Finally, º/5 radians is º

5
180
º

= 36 degrees.

Having reviewed radian measure, we now recall the definition of the two
trigonometric functions sine and cosine, abbreviated as sin and cos. The
values of these functions can be read straight o� the unit circle.

Definition 3.1 Given a real number µ,
let P be the point at µ radians on the unit
circle, as indicated on the right. The func-
tions sin and cos are defined as

cos(µ) = x-coordinate of the point P,

sin(µ) = y-coordinate of the point P.

As µ can be any real number, functions
sin and cos both have domain R.

P

µ1 sin(µ)

cos(µ)
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This definition, coupled with our knowledge
of the unit circle, makes it easy to mentally
find sin or cos of any integer multiple of º

2 .
Just read the x- or y-coordinates o� the unit
circle. The diagram on the right reveals:

cos(0)= 1, cos(º2 )= 0, cos(º)=°1,
sin(0)= 0, sin(º2 )= 1, sin(º)= 0.

0, 2º

º
2

°º, º

3º
2

Also cos(°º)=°1, sin(3º
2 )=°1, and cos(3º

2 )= 0. As 7º
2 and 3º

2 are at the same
point on the unit circle, cos(7º

2 ) = cos(3º
2 ) = 0. Avoid using a calculator for

such simple computations. Working them out with the unit circle reinforces
their meaning; a calculator invites us to forget the meaning.

To compute sin and cos of many other angles, it is helpful to know the
two right triangles in Figure 3.3. The 45-45-90 triangle has a hypotenuse
of length 1 and two legs of length

p
2

2 . (Numbers that are easily gotten from
the Pythagorean theorem.) The 30-60-90 triangle is half of an equilateral
triangle with all sides of length 1. Thus one leg has length 1

2 , and the
Pythagorean theorem yields

p
3

2 for the other.

45±

45±1 p
2

2

p
2

2

60±

30±1 1

1
2

p
3

2

Figure 3.3. Standard triangles: the 45-45-90 (left), and 30-60-90 (right).

These triangles help us find sin and cos of many
angles. For instance, let’s find sin and cos of º

3 .
The point on the unit circle at º

3 is the corner
of a 30-60-90 triangle; we read o�

cos
°

º
3
¢

= 1
2 , sin

°

º
3
¢

=
p

3
2 .

Similarly the 45-45-90 triangle at 3º
4 yields

cos
°3º

4
¢

=°
p

2
2 , sin

°3º
4

¢

=
p

2
2 .

º
3

°º
6

3º
4

60±45±

30±

The picture also tells us cos
°

°º
6
¢

=
p

3
2 and sin

°

º
6
¢

= 1
2 . In this way we can

compute sin and cos of any angle that is an integer multiple of º
4 or º

6 .
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Of course, if we were ever confronted with something like, say, sin
°

º
11

¢

,
we would be stuck because none of our standard triangles fit this problem,
as º

11 is not a multiple of º
4 or º

6 . As a last resort we could take out a
calculator and get an approximate answer to ten or so decimal places. But
it is a fact that multiples of º

4 and º
6 come up often, especially in college-level

mathematics courses like this one. Understanding how to handle them gives
us a conceptual framework for trigonometric functions that is necessary for
further study and applications.

Some comments on notation are in order. It is common to abbreviate
sin(µ) and cos(µ) as sinµ and cosµ, even though this is like writing f (x) as
f x. At first glance it seems that this could introduce ambiguity. Does
sin2µ+º mean sin(2µ+º) or sin(2µ)+º, or sin(2)µ+º? The convention is that
the trigonometric function applies to the term immediately following it.
Thus sin2µ+º means sin(2µ)+º. If we intended it to mean sin(2µ+º), then
the parentheses would be mandatory. In the interest of clarity, this text
will lean towards inserting parentheses whether or not they are necessary;
however, there will certainly be many occasions where we omit them.

Also, expressions such as (sin(µ))2 are abbreviated as sin2µ or sin2(µ).
Thus, for instance, cos4 º

4 =
°

cos º
4
¢4 =

≥p
2

2

¥4
= 1

4 . The one exception to this
rule concerns the exponent °1. cos°1µ does not mean 1

cosµ , but rather the
inverse cosine function arccos(x). (More on that in Chapter 6.)

Finally, we have been using µ for the argument of our trigonometric
functions because it is associated with radian measure. Obviously, any
variable would su�ce. We do not balk at, say, cos x, even though the argu-
ment x conflicts slightly with the definition of cos. In cos x, the value of x is
interpreted as a radian measure on the unit circle. The function value cos x
is the x-coordinate of that point on the unit circle.
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Figure 3.4. The graphs of y= sin(x) and y= cos(x)
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Of course the sine and cosine functions can be graphed, as in Figure 3.4.
You are undoubtedly already familiar with these graphs, but take a moment
to see how they follow from the definitions of sin(x) and cos(x) given here.

There are a total of six trigonometric functions, and each is expressed in
terms of sine and cosine. Two of these are the secant and cosecant functions.
They are abbreviated as sec(x) and csc(x), and defined as

sec(x) = 1
cos(x)

,

csc(x) = 1
sin(x)

.

Figure 3.5 shows their graphs. (For reference, the graphs of cos(x) and sin(x)
are shown dotted.)
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y
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°1

y= sin(x)

y= csc(x)

Figure 3.5. The graphs of y= sec(x)= 1
cos(x)

and y= csc(x)= 1
sin(x)
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Take a moment to see how these graphs make sense. The value y =
csc(x) is very large when its denominator sin(x) is close to 0, and undefined
if sin(x) = 0. Thus the graph has a vertical asymptote at x = kº, for any
integer k. Similarly y= sec(x) has an asymptote wherever its denominator
cos(x) is zero, namely at the points º

2 +kº.
The final two trigonometric functions are called tangent and cotangent,

and denoted as tan(x) and cot(x). They are defined as

tan(x) = sin(x)
cos(x)

,

cot(x) = cos(x)
sin(x)

.

Figure 3.6 shows their graphs. As usual, you should examine the graphs to
see that they conform to the above definitions.

x

y

°º °º
2

º
2

º 3º
2

2º 5º
2

3º

y= tan(x)

x

y

°º °º
2

º
2

º 3º
2

2º 5º
2

3º

y= cot(x)

Figure 3.6. The functions y= tan(x) and y= cot(x).
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If k is an integer, then the point at µ on the unit circle is identical to
the point at µ+2kº. (Starting at µ, take k laps of length 2º around the unit
circle to get to µ+k2º.) Therefore

cos(µ+2kº) = cos(µ), (3.1)
sin(µ+2kº) = sin(µ), (3.2)
sec(µ+2kº) = sec(µ), (3.3)
csc(µ+2kº) = csc(µ). (3.4)

These equations are an algebraic manifestation of the fact that the graphs
of cos, sin, sec and cos repeat themselves every 2º units. We express this in
words by saying that these functions are periodic, with period 2º.

Equations similar to the above hold for tan and cot, but in those cases
we can omit the factor of 2. A glance at their graphs (page 39) reveals that

tan(µ+kº) = tan(µ), (3.5)
cot(µ+kº) = cot(µ). (3.6)

Thus tan and cot are periodic with period º.
Test your understanding by working some of the following exercises. Do

them without a calculator. With a calculator they are merely busy work,
but doing them mentally reinforces our understanding of their meaning.

Exercises for Section 3.1
1. sin 5º

4 2. sin 4º
3 3. sin° 5º

3 4. sin° 5º
6 5. sin 3º

4 6. cos 5º
4

7. cos 4º
3 8. cos° 5º

3 9. cos° 5º
6 10. cos 3º

4 11. sec 5º
4 12. sec 4º

3

13. sec° 5º
3 14. csc° 5º

6 15. csc 3º
4 16. csc 5º

4 17. csc 4º
3 18. csc° 5º

3

19. csc° 5º
6 20. csc 3º

4 21. tan 5º
4 22. tan 4º

3 23. tan° 5º
3 24. tan° 5º

6

25. tan 3º
4 26. cot 5º

4 27. cot 4º
3 28. cot° 5º

3 29. cot° 5º
6 30. cot 3º

4

31. Convert 56± to radians. 32. Convert 190± to radians.
33. Convert 40± to radians. 34. Convert °50± to radians.
35. Convert 108± to radians. 36. Convert 72± to radians.
37. Convert 3º

10 radians to degrees. 38. Convert 1 radian to degrees.
39. Convert º

18 radians to degrees. 40. Convert 5º
9 radians to degrees.

41. Convert ° 7º
36 radians to degrees. 42. Convert 13º

180 radians to degrees.



Solving Triangles 41

3.2 Solving Triangles
Sometimes, in working with a right triangle, we’ll know the measurements
of one of its angles and one of its sides, and will need to find the length of
another of its sides. This problem can always be solved with a trig function.
The process of finding one (or both) of the unknown sides is called solving
the triangle. We review this now.

Consider the triangle on the left of Figure 3.7. If we knew only the value
of µ and that the hypotenuse had length 1, then the other two sides have to
be sin(µ) and cos(µ), as illustrated. That was easy because the hypotenuse
being 1 means that the triangle fits neatly onto the unit circle.

µ

1 sin(µ)

cos(µ)
µ

ADJ

OPP
HYP

Figure 3.7. Similar triangles

More generally, the triangle could be as illustrated on the right. Here
HYP stands for the length of the hypotenuse (not necessarily 1), OPP is the
length of the side opposite µ, and ADJ is the side adjacent to µ. If HYP 6= 1,
then OPP and ADJ are not equal to sin(µ) and cos(µ), as they are on the left.
But certain ratios of them are equal to sin(µ) and cos(µ).

To see how, notice that the two triangles in Figure 3.7 are similar. Thus
(for instance) we have OPP

HYP = sin(µ)
1 = sin(µ). Also, ADJ

HYP = cos(µ)
1 = cos(µ), and

OPP
ADJ = sin(µ)

cos(µ) = tan(µ). In summary, for any right triangle we have

sin(µ)= OPP
HYP, cos(µ)= ADJ

HYP, tan(µ)= OPP
ADJ .

Reciprocating each of these yields formulas for the other trig functions:

csc(µ)= HYP
OPP , sec(µ)= HYP

ADJ , cot(µ)= ADJ
OPP.

This shows that each of the six trig functions is a certain ratio of the sides
of a triangle with angle µ. If we know any two of the three quantities in one
of these equations, then we can algebraically solve for the third. In this way
we can solve for missing sides of right triangles.
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Example 3.2 Find sides x and z of the triangle below. Also find its area.

35±

x

5 cmz

To find z, notice that sin(35±) = OPP
HYP = 5

z . Reciprocating, csc(35±) = z
5 , so

z = 5csc(35±). Now, if instead of 35± we had a nice angle like 30± or 45±, then
we could work out the cosecant mentally. Here we are not so lucky, but we
can get by with a calculator:

z = 5csc(35±)º 5 ·1.74344= 8.71723cm.

To find x, notice that tan(35±) = OPP
ADJ = 5

x . Reciprocating, cot(35±) = x
5 , so

x = 5cot(35±)º 7.14074 cm.
The area of the triangle is one half its base times its height, that is,

Area= 1
2 x ·5= 1

25cot(35±) ·5= 25cot(35±)º 35.7037001 square cm.

Example 3.3 Find the area of the equiangular triangle with sides of
length x cm.

Solution: The answer will depend on x. The triangle
is drawn on the right; each angle is 60±, or º

3 radians.
Let h be the height of the triangle. To find h note that
sin º

3 = OPP
HYP = h

x , so h = xsin º
3 = x

p
3

2 cm. Then the area of
the triangle is 1

2 bh = 1
2 xx

p
3

2 = x2
p

3
4 square cm.

º
3

h

x

x x

Example 3.4 Find the length of the diagonal AB of the parallelogram
shown below, left.

º
6

2

3
A

B

º
6

2 2

3A D p
3 C

B

1

Solution: Drop a perpendicular from B to a point C, as shown on the right.
Solving the triangle DBC, we get BC = 2sin º

6 = 1 and DC = 2cos º
6 =

p
3.

Now, the diagonal AB is the hypotenuse of the right triangle ABC. By
the Pythagorean theorem, we see that AB has length

q

(3+
p

3)2 +12 =
p

13+6
p

3 units.
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Exercises for Section 3.2
1. Find the missing sides.

º/6
x

3
z

2. Find the missing sides.

º/6
x

y3

3. Find the missing sides.

º/6
3

yz

4. Find the missing sides.

40±

x

5
z

5. Find the missing sides.

40±

x

y5

6. Find the missing sides.

40±

5

yz

7. Find the missing sides.

º/3

x

p
2

z

8. Find the missing sides.

º/3

x

y2/3

9. Find the area.

º/3

x

y2/3

10. Find the area.

º/6 º/4
10

11. Find the area.

º/6
4

5

12. Find the area of the parallelogram.

º/6
4

5

13. Find the lengths of both diagonals of
the parallelogram in Exercise 12.

14. The area is 10 square units. Find the
sides:

º/10
x

yz

15. Find side x of the isosceles triangle:

º/10
x

33

16. Find the area of the regular pentagon:
11

1

1

1
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3.3 Trigonometric Identities
A trigonometric identity is an equation involving one or more trig func-
tions that is true for all values of the variables that appear in it.

µ1 sin(µ)

cos(µ)

One important identity comes straight from the familiar diagram above.
Applying the Pythagorean theorem to the right triangle yields

sin2(µ)+cos2(µ)= 1. (3.7)

This equation — this trigonometric identity — holds for any value of µ.
Dividing both sides of Equation (3.7) by cos2(µ) yields a new identity

tan2(µ)+1= sec2(µ). (3.8)

Alternatively, we could divide both sides of Equation (3.7) by sin2(µ) to get

1+cot2(µ)= csc2(µ). (3.9)

Equation (3.7) is packed with meaning. It expresses a fundamental
relationship between the sides of right triangles on the unit circle, and
hence also a relationship between the functions sin and cos. By contrast,
Equations (3.8) and (3.9) may seem less meaningful. But they too say
something fundamental about right triangles. Consider the triangle below,
whose adjacent side (not hypotenuse) has length 1.

1
µ

tan(µ)sec(µ)

For this triangle, OPP=OPP/1=OPP/ADJ= tan(µ), that is, its opposite side
is tan(µ). The hypotenuse is HYP = HYP/1 = HYP/ADJ = sec(µ), as labeled.
Equation (3.8) is just the Pythagorean theorem applied to this triangle.
Similarly, Equation (3.9) can be understood as the Pythagorean theorem
applied a triangle whose opposite side is 1, as you are invited to check.
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Example 3.5 Let µ be such that tan(µ)= 2 and 0< µ < º
2 . Find cos(µ).

We give two solutions. The first uses Equation (3.8), which in the present
situation says 22 +1= sec2(µ), or

5=
µ

1
cos(µ)

∂2
.

Solving, cos(µ)=± 1p
5
. As 0< µ < º

2 , we have cos(µ)> 0. Thus cos(µ)= 1p
5
.

The second solution is more organic. Begin by drawing a triangle for
which tan(µ)= OPP

ADJ = 2
1 = 2, like this one.

1
µ

2

By the Pythagorean theorem, the hypotenuse has length HYP=
p

12 +22 =p
5. Then cos(µ)= ADJ

HYP = 1p
5
, which agrees with our first solution.

This second solution has the advantage of quickly giving the values of
all the other trigonometric functions at µ. For example sin(µ)= OPP

HYP = 2p
5
. It

is good practice to use triangles (rather than blind reliance of formulas)
when dealing with trigonometry.

For two further identities, consider the two points located at µ and °µ
on the unit circle, as illustrated below.

µ

°µ

These points have the same x-coordinates, which is to say cos(°µ)= cos(µ).
But the y-coordinate of one is the negative of the y-coordinate of the other,
which means sin(°µ)=°sin(µ). In summary,

cos(°µ) = cos(µ), (3.10)
sin(°µ) = °sin(µ). (3.11)

At this point the unit circle should be so ingrained that the above equations
are transparent. Indeed we will often use them without comment. But be
careful not to read more into them than is actually there. For instance, if k
is a number other than °1, it is generally not true that sin(kµ)= ksin(µ).
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You have probably seen the following addition formulas before. (Exer-
cise 7 at the end of this section helps explain why they are true.)

sin(Æ+Ø) = sin(Æ)cos(Ø)+cos(Æ)sin(Ø) (3.12)
cos(Æ+Ø) = cos(Æ)cos(Ø)°sin(Æ)sin(Ø) (3.13)

Putting Æ= µ and Ø= µ in the Formulas (3.12) and (3.13) yields two double
angle formulas, which will be useful several times in later chapters.

sin(2µ) = 2sin(µ)cos(µ), (3.14)
cos(2µ) = cos2(µ)°sin2(µ). (3.15)

Identities can often be combined to good e�ect. For example Equa-
tions (3.10), (3.11) and (3.12) combine as

sin(Æ°Ø)= sin(Æ)cos(Ø)°cos(Æ)sin(Ø).

Two other formulas come from adding (or subtracting) 1= sin2(µ)+cos2(µ)
to (or from) Equation (3.15).

cos2(µ) = 1+cos(2µ)
2

, (3.16)

sin2(µ) = 1°cos(2µ)
2

. (3.17)

These can be useful because they allow us to replace a squared term with
an expression with no square, thereby o�ering possibilities for simplifica-
tion. They are sometimes called half angle formulas because they can be
written as cos2(µ2 )= 1

2 (1+cos(µ)) and sin2(µ2 )= 1
2 (1°cos(µ)).

Example 3.6 Find sin
µ

7º
12

∂

.

Solution: The value 7º
12

is not one that lends an immediate evaluation.

But note that 7º
12

= º

4
+ º

3
. Using this and Equation (3.12),

sin
µ

7º
12

∂

= sin
≥º

4
+ º

3

¥

= sin
≥º

4

¥

cos
≥º

3

¥

+cos
≥º

4

¥

sin
≥º

3

¥

=
p

2
2

· 1
2

+
p

2
2

·
p

3
2

=
p

2+
p

6
4

.

Thus sin
µ

7º
12

∂

=
p

2+
p

6
4

.
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Here is a summary of our identities, including a few from the exercises.

Triangle Formulas
sin2µ+cos2µ = 1

1+ tan2µ = sec2µ

1+cot2µ = csc2µ

Addition Formulas
sin(Æ+Ø) = sinÆcosØ+cosÆsinØ
cos(Æ+Ø) = cos2Æ°sin2Ø

tan(Æ+Ø) = tanÆ+ tanØ
1° tanÆtanØ

Double Angle Formulas
sin2µ = 2sinµ cosµ
cos2µ = cos2µ°sin2µ

tan2µ = 2tanµ
1° tan2µ

Half Angle Formulas
cos2(µ) = 1+cos(2µ)

2
sin2(µ) = 1°cos(2µ)

2

We close with a final trigonometric identity, the so-called law of cosines.
It is something that may not be needed until the third semester of calculus.
You may opt to skip it now and revisit it when (and if) the need arises.

The law of cosines is a generalization of the Pythagorean theorem in
that it applies to triangles that are not necessarily right-angled. Consider
the triangle below with three side lengths a, b and c. It would be a right
triangle if ∞= º

2 , and in that case the Pythagorean theorem says a2+b2 = c2.
The law of cosines relates a,b and c for any value of ∞.

∞

a

bc

The Law of Cosines: If a triangle has sides of length a,b and c, and ∞ is
the measure of the angle opposite c (as illustrated above), then

c2 = a2 +b2 °2abcos(∞). (3.18)

This reduces to the Pythagorean theorem when ∞ is a right angle, as
then cos(∞)= 0. The law of cosines is not hard to verify. See Exercise 9.
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Exercises for Section 3.3
1. Use this chapter’s addition formulas (3.12) and (3.13) to verify the two identities

cos(º/2°µ)= sin(µ) and sin(º/2°µ)= cos(µ).
2. Use the unit circle (and your knowledge of rudimentary geometry) to explain

why cos(º/2°µ)= sin(µ) and sin(º/2°µ)= cos(µ).

3. Verify the identity sin(Æ)+sin(Ø)= 2sin
µ

Æ+Ø
2

∂

cos
µ

Æ°Ø
2

∂

.

4. Verify the identity cos(Æ)+cos(Ø)= 2cos
µ

Æ+Ø
2

∂

cos
µ

Æ°Ø
2

∂

.

5. Verify the identity sin(Æ)sin(Ø)= 1
2

£

cos(Æ°Ø)°cos(Æ+Ø)
§

.

6. Verify the identity cos(Æ)cos(Ø)= 1
2

£

cos(Æ°Ø)+cos(Æ+Ø)
§

.

7. This exercise justifies the formulas sin(Æ+Ø) = sin(Æ)cos(Ø)+ cos(Æ)sin(Ø) and
cos(Æ+Ø)= cos(Æ)cos(Ø)°sin(Æ)sin(Ø). An outline follows.

The rectangle on the right is divided into four right triangles;
the heavy diagonal has length 1. Solve each triangle to find
the lengths of its sides.

The fact that the right and left sides of the rectangle are
equal lengths will give the first formula; the fact that the top
and bottom sides are equal lengths gives the second.

1

Æ
Ø

Æ+Ø

Æ

8. Derive the addition formula tan(Æ+Ø)= tanÆ+ tanØ
1° tanÆtanØ

. (Suggestion: Start with
Equations (3.12) and (3.12).)

9. Prove Equation (3.18), the law of cosines.
Suggestion: The relevant triangle is sketched to the
right. Drop a perpendicular from the apex to the bot-
tom side, as illustrated. This divides the triangle into
two right triangles. Solve for their edges and apply the
Pythagorean theorem to the triangle on the left.

∞

a

bc

The angle ∞ in the diagram is acute. Use a di�erent diagram for obtuse angles.
10. There is a trigonometric identity called the law of sines, which states the

following: Suppose a triangle has three angles Æ, Ø and ∞. Further, suppose
the side opposite Æ has length a, the side opposite Ø has length b, and the side
opposite ∞ has length c. Then

sin(Æ)
a

= sin(Ø)
b

= sin(∞)
c

.

Prove this. (Consider drawing a diagram as in Exercise 9, above.)
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3.4 Solving Trigonometric Equations
We just discussed trigonometric identities, equations with trig functions
that are true for every possible value of the variable in the equation.

It is of course possible to have an equation that is true for some values
of the variable but not true for others. Such an equation is not an identity.
But it is something that we could solve, that is, find all values of the variable
that make it true. We illustrate this with a series of examples.

Example 3.7 Solve the equation cos(µ)= 1
2

.
Solution: We seek all values of µ for which cos(µ) = 1

2 .
For this, the unit circle is helpful. Our experience with
it tells us that it has two points with x-coordinate 1

2
(i.e., for which cos(µ) = 1

2 ), and they are µ = ±º
3 . Thus

two solutions of the equation are µ± º
3 . But we have not

yet found all solutions.
°º

3

º
3

We must not forget that we could add any integer multiple of 2º to either of
these µ values and still be at the same point on the unit circle. Thus the set
of all solutions is µ =±º

3 +2ºk where k is an integer.
Answer: The set of solutions is

n

±º
3
+2ºk : k = 0,±1,±2,±3, . . .

o

. Notice that
there are infinitely many solutions. This is typical with trigonometric
equations.

Example 3.8 Solve the equation cos2(x)= cos(x).
Solution: We seek all values of x that make this a true equation. Notice
that for a first step we cannot divide both sides by cos(x). The reason is that
cos(x) can be zero, in which case the division is illegal. (In fact, if our first
step were to divide by cos(x), we would miss many of the solutions. Try it.)
Instead we can avoid division by getting all terms to one side and factoring:

cos2(x) = cos(x)

cos2(x)°cos(x) = 0

cos(x)
°

cos(x)°1) = 0

This holds when cos(x)= 0 or cos(x)°1= 0, that is, when
cos(x)=0 or cos(x)=1. We analyze these cases separately.

°º
2

º
2

0

There are two points on the unit circle at which cos(x) = 0, namely at
radians x =±º

2 . Thus the factor cos(x) is zero exactly when x =±º
2 +2ºk, for

any integer k. A glance at the unit circle tells us we may write this in the
slightly more compact form x = º

2 +ºk.
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Now let’s turn to cos(x)= 1 (which makes the second factor 0). There is
only one point on the unit circle at which cos(x)= 1, namely x = 0. (See the
diagram.) Thus cos(x)= 1 provided that x = 0+2ºk for integers k.

The previous two paragraphs give our final answer. The set of all solu-
tions to the equation is

nº

2
+ºk : k = 0,±1,±2,±3, . . .

o

together with the set
©

2ºk : k = 0,±1,±2,±3, . . .
™

.

Example 3.9 Find the domain of the function f (x)= 1
1+sin(x)

.

Solution: This problem is not asking us to solve an equation, at least not
directly. Looking at the function, we see that it is meaningful for any input
x except those that make the denominator zero, that is, those x for which
1+sin(x)= 0. To find all such “bad” values of x, we need to solve the equation
1+sin(x)= 0, that is, we need to solve sin(x)=°1. There is only one point on
the unit circle for which sin(x)=°1, and it is located at 3º

2 . It follows that
the solutions of sin(x)=°1 are the values x = 3º

2 +2ºk, where k is an integer.
These are the values of x that are not in the domain of f (x).

Answer: The domain of f (x) is the set of all numbers except those of form
x = 3º

2 +2ºk, that is,
Ω

x 2R : x 6= 3º
2

+2ºk, where k = 0,±1,±2,±3, . . .
æ

.
Note: There are many slightly di�erent (but equally correct) ways of

formulating this answer. For example, we could said that the point on the
unit circle for which sin(x) =°1 is located at x =°º

2 . Then for the domain
we would get all numbers except those of form °º

2 +2ºk. Although it looks
di�erent, this is the same answer as above. Note that °º

2 = 3º
2 °2º, so adding

any integer multiple of 2º to °º
2 gives 3º

2 plus some other integer multiple
of 2º, and conversely.

In solving a trigonometric equation, we often arrive at one or more
simpler equations in a form such as cos(µ) = 1

2 . We then have to think
backwards and ask ourselves “For what µ is cos(µ) = 1

2?” The unit circle
usually provides an answer.

But it is of course possible that we might arrive at an equation such
as cos(µ) = 1

3 . Here we are stuck because no familiar angle µ satisfies this
equation. Chapter 6 gives a solution to this dilemma. It introduces the
inverse trigonometric functions. One of these functions is cos°1(x), which
equals an angle µ for which cos(µ) = x. Thus a solution to cos(µ) = 1

3 is
µ = cos°1(1/3).

We will cover this in good time. No such inverse trig functions are needed
in the following exercises. The unit circle is enough.
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Exercises for Section 3.4
Solve the equations.
1. 1+ tan(µ)= 0

2. 1° tan2(µ)= 0

3. 4sin2(µ)= 3

4. 2sin2(µ)°sin(µ)= 1

5. 2cos2(µ)°1= 0

6. sin2(x)= sin(x).
7. 2sin(µ)cos(µ)=°1

8. sin(µ)cos(µ)= sin(2µ).
Hint: Use Equation (3.14).

9. cos2(µ)°sin2(µ)= sin(2µ)

10. sin2(x)=°cos(2x) (Use Equation (3.17).)

11. sin2(x)°1= cos(x)

12. sin(x)=
p

3 cos(x)

13. tan2(x)= 3
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3.5 Exercise Solutions for Chapter 3

Solutions for Section 3.1
1. sin 5º

4 =°
p

2
2

5º
4

º
4

45±

3. sin° 5º
3 =

p
3

2

° 5º
3

°º
3

60±

5. sin 3º
4 =

p
2

2

3º
4

º
4

45±

7. cos 4º
3 =° 1

2

4º
3

º
3

60±

9. cos° 5º
6 =°

p
3

2

° 5º
6 °º

6

30±

11. sec 5º
4 = 1

cos 5º
4
=° 2p

2
=°

p
2

5º
4

º
4

45±

13. sec° 5º
3

1
cos° 5º

3
= 1

1/2=2

° 5º
3

°º
3

60±

15. csc 3º
4 = 1

sin 3º
4
= 2p

2
=
p

2

3º
4

º
4

45±

17. csc 4º
3 = 1

sin 4º
3
=° 2p

3

4º
3

º
3

60±

19. csc° 5º
6 = 1

sin° 5º
6
=°2

° 5º
6 °º

6

30±

21. tan 5º
4 = sin 5º

4
cos 5º

4
=°

p
2/2

°
p

2/2
=1

5º
4

º
4

45±

23. tan° 5º
3 = sin 5º

3
cos 5º

3
=

p
3/2

1/2 =
p

3

° 5º
3

°º
3

60±
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25. tan 3º
4 =sin 3º

4
cos 3º

4
=

p
2

2

°
p

2
2
=°1

3º
4

º
4

45±

27. cot 4º
3 = cos 4º

3
sin 4º

3
= ° 1

2

°
p

3
2
=
p

3

4º
3

º
3

60±

29. cot° 5º
6 = cos° 5º

6
sin° 5º

6
=

°
p

3
2

° 1
2
=
p

3

° 5º
6 °º

6

30±

31. Convert 56± to radians.
rad = 56

180º= 14
45º

33. Convert 40± to radians.
rad = 40

180º= 2
9º

35. Convert 108± to radians.
rad = 108

180º= 27
45º

37. Convert 3º
10 radians to degrees.

deg = 3º/10
º 180= 54±

39. Convert º
18 radians to degrees.

deg = º/18
º 180= 10±

41. Convert ° 7º
36 radians to degrees.

deg = °7º/36
º 180=°35±

Exercises for Section 3.2

1. Find the missing sides.

º/6
x

3
z To find z: sin º

6 = OPP
HYP, so

1
2 = 3

z . Therefore z = 6.

To find x: tan º
6 = OPP

ADJ , so

1p
3
= 3

x . Therefore x = 3
p

3.

3. Find the missing sides.

º/6
3

yz To find z: cos º
6 = ADJ

HYP, so
p

3
2 = 3

z . Therefore z = 6p
3
.

To find y: tan º
6 = OPP

ADJ , so

1p
3
= y

3 . Therefore y= 3p
3
.

5. Find the missing sides.

40±

x

y5 To find x: cos40± = ADH
HYP , so

cos40± = x
5 , so x = 5cos40±.

To find y: sin40± = OPP
HYP, so

sin40± = y
5 , so y= 5sin40±.

7. Find the missing sides.

º/3

x

p
2

z To find x: tan º
3 = OPP

ADJ , so
p

3= xp
2
. Thus x =

p
6.

To find z: cos º
6 = ADJ

HYP, so

1
2 =

p
2

z . Thus z = 2
p

2.

9. Find the area.

º/3

x

y2/3
To find x: sin º

3 = OPP
HYP. Thus

p
3

2 = x
2/3 , so x =

p
3

3 .

To find y: cos º
3 = ADJ

HYP. Thus 1
2 = y

2/3 , so y= 1
3 .

Area = 1
2 base ·height= 1

2 xy= 1
2 ·

p
3

3 · 1
3 =

p
3

18 square units.
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11. Find the area.

º/6
4

5

h

b

To find height h: 1
2 = sin º

6 = OPP
HYP = h

4 , so h = 2.
For base b:

p
3

2 = cos º
6 = ADJ

HYP = b
4 , so b = 2

p
3.

Area = (triangle area)+ (rectangle area)
= 1

2 2 ·2
p

3+5 ·2= 2
p

3+10 square units.

13. Find the lengths of both diagonals of the parallelogram in Exercise 12.

º/6 º/6

4
4

5

5 4cosº/6

4s
in
º

/6

The longer diagonal is the hypotenuse of the shaded right triangle above, which by

the Pythagorean theorem is
q

(5+4cos(º/6))2+4sin2(º/6)=
r

≥

5+4 ·
p

3
2

¥2
+

°

4 · 1
2
¢2

=
q

(5+2
p

3)2 +22 =
p

25+10
p

3+12+4=
p

41+10
p

3.

4s
in
º

/6

º/6

4

5

4cosº/6
5

The shorter diagonal is the hypotenuse of the shaded right triangle above, which

by the Pythagorean theorem is
q

(5°4cos(º/6))2+4sin2(º/6)=
r

≥

5°4 ·
p

3
2

¥2
+

°

4 · 1
2
¢2

=
q

(5°2
p

3)2 +22 =
p

25°10
p

3+12+4=
p

41°10
p

3.

15. Find side x of the isosceles triangle:

º/10
x

33
º/10

x/2

3

Cut the triangle in half by dropping a perpendicular bisector to its base as
indicated. Then looking at half the triangle (above, right), we get
cos(º/10)= ADJ

HYP = x/2
3 = x

6 . Thus x = 6cos(º/10)º 5.70633909777 (with calculator).
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Solutions for Section 3.3

1. Use the addition formulas (3.12) and (3.13) to establish the two identities
cos(º/2°µ)= sin(µ) and sin(º/2°µ)= cos(µ).

First, cos(º/2°µ)= cos
°

º/2+ (°µ)
¢

= cos(º/2)cos(°µ)°sin(º/2)sin(°µ)
= 0 ·cos(°µ)°1 ·sin(°µ)=°sin(°µ)= sin(µ).

Next, sin(º/2°µ)= sin
°

º/2+ (°µ)
¢

= sin(º/2)cos(°µ)°cos(º/2)sin(°µ)
= 1 ·cos(°µ)°0 ·sin(°µ)= cos(°µ)= cos(µ).

3. Verify the identity sin(Æ)+sin(Ø)= 2sin
µ

Æ+Ø
2

∂

cos
µ

Æ°Ø
2

∂

.

Using the addition formulas (3.12) and (3.13), the right-hand side becomes

2sin
µ

Æ+Ø
2

∂

cos
µ

Æ°Ø
2

∂

= 2sin
µ

Æ

2
+ Ø

2

∂

cos
µ

Æ

2
+ °Ø

2

∂

= 2
µ

sin
Æ

2
cos

Ø

2
+cos

Æ

2
sin

Ø

2

∂µ

cos
Æ

2
cos

°Ø
2

°sin
Æ

2
sin

°Ø
2

∂

= 2
µ

sin
Æ

2
cos

Ø

2
+cos

Æ

2
sin

Ø

2

∂µ

cos
Æ

2
cos

Ø

2
+sin

Æ

2
sin

Ø

2

∂

= 2
µ

sin
Æ

2
cos

Æ

2
cos2 Ø

2
+sin2 Æ

2
cos

Ø

2
sin

Ø

2
+cos2 Æ

2
sin

Ø

2
cos

Ø

2
+cos

Æ

2
sin

Æ

2
sin2 Ø

2

∂

= 2
µ

sin
Æ

2
cos

Æ

2

µ

cos2 Ø

2
+sin2 Ø

2

∂

+ sin
Ø

2
cos

Ø

2

µ

cos2 Ø

2
+sin2 Ø

2

∂∂

= 2sin
Æ

2
cos

Æ

2
+ sin

Ø

2
cos

Ø

2

= sin2 · Æ
2
+sin2 · Ø

2
= sin(Æ)+sin(Ø).

(In the last line we applied the double angle formula (3.14).)

5. Verify the identity sin(Æ)sin(Ø)= 1
2

£

cos(Æ°Ø)°cos(Æ+Ø)
§

.
Using the addition formulas (3.12) and (3.13), the right-hand side becomes

1
2

£

cos(Æ°Ø)°cos(Æ+Ø)
§

= 1
2

£

cos(Æ+ (°Ø))°cos(Æ+Ø)
§

= 1
2

h

°

cos(Æ)cos(°Ø)°sin(Æ)sin(°Ø)
¢

°
°

cos(Æ)cos(Ø)+sin(Æ)sin(Ø)
¢

i

= 1
2

h

°

cos(Æ)cos(Ø)+sin(Æ)sin(Ø)
¢

°
°

cos(Æ)cos(Ø)+sin(Æ)sin(Ø)
¢

i

= sin(Æ)sin(Ø).
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9. Prove Equation (3.18), the law of cosines.
First assume ∞ is acute, so our triangle is as
pictured on the right. We need to show that
c2 = a2 +b2 °2abcos(∞)

Drop a perpendicular from the apex, cutting the
triangle into two smaller triangles, shown white
and gray on the right. By standard trigonometry,
the gray triangle has base bcos∞. Then the white
triangle has base a°bcos∞. Call the height of
both triangles h.

∞

a

bc

∞

bc

bcos∞a°bcos∞

h

By the Pythagorean theorem applied to the white triangle, h2 = c2°(a°bcos∞)2.
By the Pythagorean theorem applied to the gray triangle, h2 = b2 ° (bcos∞)2.
From these two equations we get

c2 ° (a°bcos∞)2 = b2 ° (bcos∞)2

c2 °a2 +2abcos∞°b2 cos2∞ = b2 °b2 cos2∞

c2 = a2 +b2 °2abcos∞,

which is what we needed to show.

Next assume ∞ is obtuse, so our triangle is as
shown on the right. Again we need to show that
c2 = a2 +b2 °2abcos(∞)

Drop a perpendicular from the apex, forming
a new triangle on the right, shown gray. One
angle of the gray triangle is º°∞, as indicated.
By standard trigonometry, this gray triangle has
base bcos(º°∞). Call its height h.

∞

a

b
c

∞ º°∞
a

b
c

h

bcos(º°∞)

By the Pythagorean theorem applied to the gray triangle, h2 = b2°(bcos(º°∞))2.
There is also a large right triangle that is the union of the gray triangle with
the original (white) triangle. the Pythagorean theorem applied to it yields
h2 = c2 ° (a+bcos(º°∞))2. Together these two equations give

c2 ° (a+bcos(º°∞))2 = b2 ° (bcos(º°∞))2

c2 °a2 °2abcos(º°∞)°b2 cos2(º°∞) = b2 °b2 cos2(º°∞)
c2 = a2 +b2 +2abcos(º°∞),

Noting that cos(º°∞)=°cos(∞), this becomes c2 = a2 +b2 °2abcos(∞).
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Exercises for Section 3.4

1. Solve 1+ tan(µ)= 0.
Write this as tan(µ)=°1.
Note that tan(°º/4) = °1, and adding any integer
multiple of º to °º/4 brings us to a point kº° º

4 for
which tan

°

kº° º
4
¢

= °1. Therefore the solutions of
this equation are all µ for which
µ = kº° º

4 , where k = 0,±1,±2,±3, . . ..

3º
4

°º
4

Solve

3. 4sin2(µ)= 3.
Divide both sides by 4 to get sin2(µ) = 3

4 , and then
take the square root of both sides to get sin(µ)=±

q

3
4 ,

which is sin(µ) = ±
p

3
2 . Note that if µ = º

3 or µ = °º
3 ,

then sin(µ) =±
p

3
2 , so µ = º

3 and µ =°º
3 are two solu-

tions. And we can add an integer multiple of º to
either of these two solutions to get another value
µ = kº± º

3 for which sin(µ)=±
p

3
2 .

Therefore the solutions are all µ for which
µ = kº± º

3 , where k = 0,±1,±2,±3, . . ..

º
3

°º
3

Solve

5. 2cos2(µ)°1= 0.
Write this as 2cos2(µ) = 1. Then divide both sides
by 2 to get cos2(µ)= 1

2 . Take the square root of both
sides to get cos(µ)=±

q

1
2 , which is cos(µ)=± 1p

2
=±

p
2

2 .
Note that if µ = º

4 or µ =°º
4 , then cos(µ)=

p
2

2 , so µ = º
4

and µ = °º
4 are two solutions. And we can add an

integer multiple of º to either of these two solutions
to get another value µ = kº± º

4 for which cos(µ)=±
p

2
2 .

Therefore the solutions are all µ for which
µ = kº± º

4 , where k = 0,±1,±2,±3, . . ..

º
4

3º
4

7. Solve 2sin(µ)cos(µ)=°1.

Using Equation (3.14), this becomes sin(2µ) = °1.
From this, we see that 2µ = °º

2 + 2kº, where k is
an integer. Dividing by 2 to isolate µ, we get
µ = kº° º

4 , where k = 0,±1,±2,±3, . . ..
°º

2
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9. Solve cos2(µ)°sin2(µ)= sin(2µ).
Using Equation (3.15), this becomes cos(2µ)= sin(2µ). The only values x for which
cos(x)= sin(x) are x = º

4 +kº (k an integer) which means 2µ = º
4 +kº. Dividing by

2 to isolate µ gives the solutions as µ = º
8 + kº

2 , where k = 0,±1,±2,±3, . . ..

11. Solve sin2(x)°1= cos(x).

From sin2(x)+cos2(x)= 1, we get sin2(x)°1=°cos2(x), so the equation becomes

°cos2(x) = cos(x)
cos2(x)°cos(x) = 0

cos(x)
°

cos(x)°1
¢

= 0.

The values of x that make the first factor zero are x = º
2 +kº (where k is an integer).

The values of x that make the second factor zero are x = 2kº. Thus the solutions
are all values of x for which x = º

2 +kº and x = 2kº, where k = 0,±1,±2,±3, . . ..

13. Solve tan2(x)= 3.

Take the square root of both sides to get tan(x)=±
p

3.
Note that if x = º

3 , then tan(x) =
p

3, and if x = 2º
3 ,

then tan(x) = °
p

3. Thus x = º
3 and x = 2º

3 are two
solutions. And we can add an integer multiple of º to
either of these two solutions to get another solution.
Therefore the solutions are all x for which
x = º

3 +kº or x = 2º
3 +kº, where k = 0,±1,±2,±3, . . ..

1 1

p
3

p
3

º
3

2º
3


