
CHAPTER 12

Infinite Limits

Occasionally a limit does not exist, but it does not exist for a very special
reason: as x approaches c, the corresponding value f (x) does not

approach any number, but just gets larger and larger without bound. In
such a case we say that the limit equals 1 or °1. Let’s look at some of the
ways this can happen.

Below is a function
that becomes larger
and larger as x gets
closer and closer to c.
We express this as
lim
x!c

f (x)=1.

lim
x!c

f (x)=1

lim
x!c+

f (x)=°1

x

y

x!c

f (x)

°!

Next is an f (x) that
becomes infinitely
big in the negative

direction as x gets
closer and closer to c.
We express this as
lim
x!c

f (x)=°1.

lim
x!c

f (x)=°1

lim
x!c+

f (x)=°1

x

y

x!c

f (x)

√
°

Sometimes right- and
left-hand limits are
necessary to describe
what happens to f (x)
at c. Below we have
lim
x!c+

f (x)=°1 and
lim
x!c°

f (x)=1.

lim
x!c°

f (x)=1

lim
x!c+

f (x)=°1

x

y

x!c

x!

f (x)

°!

f (x)

√
°

Limits of this type are called infinite limits. Technically speaking, such
a limit does not exist (DNE) because it does not equal a number. However,
saying that the limit is 1 or °1 expresses useful information about how it
does not exist. Thus we will freely treat infinite limits as if they do exist,
and supply 1 or °1 as the answer.
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Definition 12.1 If f is a function and c is a number, then
• lim

x!c
f (x)=1 means f (x) approaches 1 as x approaches c.

• lim
x!c

f (x)=°1 means f (x) approaches °1 as x approaches c.

In either case we say the limit is infinite. We also allow for the usual
left- and right-hand versions of infinite limits.

For the function graphed below, lim
x!3

f (x)=1, but lim
x!°2

f (x) DNE because
the answer depends on which direction x approaches 2 from. However,
lim

x!2°
f (x)=1 and lim

x!°2+
f (x)=°1. (Of course this function has plenty of

non-infinite limits, such as lim
x!0

f (x)= 0.5, etc.)

x

y

y= f (x)

°4 °3 °2 °1 1 2 3 4

°2

°1

1

2

The dashed lines in the above diagram are called vertical asymptotes.
They are visual aids that help us “hang” the graph of f (x) on the grid in
a way that visually expresses the presence of infinite limits. For instance,
f (3) is not defined, so there is no point (3, f (3)) on the graph above or below
x = 3. We might be tempted to say the “point” (3,1) is on the graph, but
there is no such point on the grid. In short, the graph of f (x) simply does
not cross the vertical asymptote through x = 3. But no matter how close x

is to 3, there is a point (x, f (x)) on the graph that is very high up, and very
close to the vertical asymptote.

If a function has a vertical asymptote, its graph gets arbitrarily close
to the asymptote, but becomes higher and higher (or lower and lower) as it
does so.

This chapter is concerned with two main questions:
• Given a limit lim

x!c
f (x), how can determine that it equals 1 or °1?

• How do we know if a function has any vertical asymptotes? If it
does, how can we find them?

We’ll also summarize our techniques for computing limits, finite or infinite.
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12.1 Recognizing Infinite Limits
Two simple examples will help us understand almost all infinite limits.
The first is lim

x!0

1
x2 . Here x approaches 0, and the (positive) value x

2 shrinks
to 0, so its reciprocal 1

x2 grows bigger and bigger without bound. We conclude
lim
x!0

1
x2 =1. (See diagram, below left.)

lim
x!0

1
x2 =1

x

y

y= 1
x2

lim
x!0°

1
x
=°1 lim

x!0+

1
x
=1

y= 1
x

x

y

The second example involves y = 1
x
, graphed above. Consider lim

x!0

1
x

.
If x is very close to zero and positive, then 1/x is very large and positive.
(Examples: If x = 0.01, then 1/x = 100, if x = 0.0001, then 1/x = 10000, etc.)
But if x is very close to zero and negative, then 1

x
is very large and negative.

(Examples: If x =°0.01, then 1/x =°100, if x =°0.0001, then 1/x =°10000.)
Thus lim

x!0

1
x

depends on which direction x approaches zero from. We have

lim
x!0°

1
x
=°1 and lim

x!0+

1
x
=1.

The above examples illustrate how infinite limits typically arise: as
limits of fractional expressions in which the numerator is nonzero and
the denominator shrinks to zero. this causes the expression to “blow up”
to positive or negative infinity. In other words a limit that equals 1 or
°1 typically has the form lim

x!c

f (x)
g(x)

, where f (x) becomes close to a non-zero
number but g(x) approaches 0. We might get something like this.

lim
x!c+

f (x)
g(x)

approaching some positive number

approaching 0, negative

= °1

If the top and bottom have the same sign (both positive or both negative),
then the answer will be 1. But if they have opposite signs the answer will
be °1. Let’s look at some examples.
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Example 12.1 Investigate lim
x!3

7° x

x°3
.

In this limit the numerator approaches 4 and the denominator shrinks to 0,
so we expect an infinite limit. Let’s investigate the left- and right-hand
limits separately, starting with lim

x!3°

7° x

x°3
.

To work this out, first note
that the term 7° x on top is
approaching 7°3 = 4. Since
x gets close to 3 from the left,
we can think of it as having
a value like x = 2.9 or x = 2.99,
etc., so the x°3 on the bottom
approaches 0, but is negative.
(Drawing number line with x to the left of 3 can be helpful; see above.) So
in this limit the numerator approaches 4 while the denominator shrinks
to 0, but remains negative. As this happens the quotient becomes a larger
and larger negative number. We conclude lim

x!3°

7° x

x°3
=°1.

lim
x!3°

7° x

x°3

approaches 4, (positive)

approaches 0, negative

= °1

x 3°!

Next, let’s look at the right-
hand limit. This time x is
approaching 3 from the right,
so it’s larger than 3 (see the
number line diagram). Thus
x°3 is positive, approaching
0. Meanwhile the numerator
7° x approaches the positive
value 3, so the quotient tends
to +1. lim

x!3+

7° x

x°3
=1

lim
x!3+

7° x

x°3

approaches 4 (positive)

approaches 0, positive

= 1

x3 √°

In summary, lim
x!3°

7° x

x°3
=°1

and lim
x!3+

7° x

x°3
=1. Because

the left- and right-had limits
don’t agree, lim

x!3

7° x

x°3
DNE.

Compare this to graph
of y= 7° x

x°3
. Note vertical

asymptote at x = 3.

y= 7° x

x°3

x

y

3 7
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Example 12.2 Determine lim
z! º

2

z

cos(z)
.

In the limit the numerator approaches the positive number º
2 while the

denominator shrinks to cos(º/2) = 0. We therefore expect an infinite limit
and continue with the left- and right-hand limits. In either case, because z

appears as an argument of cos, we know to interpret z as a radian measure.
This is illustrated below, with z approaching the radian measure º

2 (90±) on
the unit circle. Notice that, in the right-hand limit lim

z! º
2
+

z

cos(z)
, the number z

is greater than º
2 , so it is in the second quadrant, and hence cos(z) is negative.

Similarly, in the left-hand limit, z < º
2 , meaning z is in the first quadrant,

and cos(z) is positive.
º

2
z √

0

@
z < º

2 , so z is
approaching
º
2 from left

1

A

0

@
z > º

2 , so z is
approaching
º
2 from right

1

A! z

As z approaches º
2 from the right,

the numerator z is positive and
the denominator cos(z) is negative
(approaching 0) so the right-hand
limit is °1:

lim
z! º

2
+

z

cos(z)

approaches º
2 (positive)

approaches 0, negative

=° 1

As z approaches º
2 from the left,

the numerator z is positive and
the denominator cos(z) is positive
(approaching 0) so the right-hand
limit is 1:

lim
z! º

2
°

z

cos(z)

approaches º
2 (positive)

approaches 0, positive

= 1

In summary, lim
z! º

2
°

z

cos(z)
=1 and lim

z! º
2
+

z

cos(z)
=°1, so lim

z! º
2

z

cos(z)
DNE.

Example 12.3 Determine lim
z!º

1
1+cos(x)

.

Here the numerator is 1 (positive) and the denominator shrinks to 1+cos(º)=
1°1= 0. But because cos(x)∏°1 for any x, the denominator 1+cos(º) is posi-
tive, no matter how x approaches º. Therefore lim

z!º

1
1+cos(x)

=1.
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Example 12.4 This example concerns the function f (x)= x
2 °1

x3 + x2 ° x°1
.

Find: (a) lim
x!0

f (x), (b) lim
x!1

f (x), and (c) lim
x!°1

f (x).

Solutions: Part (a) is perhaps the easiest, for in this limit the denominator
does not approach zero, so we can just apply a familiar limit law.

(a) lim
x!0

f (x) = lim
x!0

x
2 °1

x3 + x2 ° x°1
=

lim
x!0

°
x

2 °1
¢

lim
x!0

°
x

3 + x
2 ° x°1

¢ = °1
°1

= 1 .

In parts (b) and (c), where x is approaching 1 and °1, we have f (1)= 0
0

and f (°1)= 0
0 , so immediately applying a limit law as we did in part (a) is

not going to work. As we well know by now, we need to try to factor and
cancel to avoid the 0

0 . So let’s factor, cancel and simplify f (x):

f (x) = x
2 °1

x3 + x2 ° x°1
= (x+1)(x°1)

x2(x+1)° (x+1)

= (x+1)(x°1)
(x2 °1)(x+1)

= (x+1)(x°1)
(x+1)(x°1)(x+1)

= 1
x+1

.

Now we can quickly dispose of part (b): lim
x!1

f (x) = lim
x!1

1
x+1

= 1
2

.

Part (c) asks for lim
x!°1

f (x) = lim
x!°1

1
x+1

. Here the denominator goes to 0
while the numerator remains 1, so we expect an infinite limit. Let’s investi-
gate with left- and right-hand limits. In lim

x!°1°
f (x) the denominator x+1 is

negative, approaching 0, while the numerator is 1, so lim
x!°1°

f (x)=°1. In
lim

x!°1+
f (x) the denominator x+1 is positive, approaching 0, so lim

x!°1+
f (x)=1.

Since the left- and right-hand limits don’t
agree, lim

x!°1
f (x) DNE, which answers part

(c). The graph of f (x) on the right sheds
light on the answers to parts (a), (b) and
(c). The graph of f (x) = x

2°1
x3+x2°x°1 looks just

like the graph of y = 1
x+1 except that it has

a hole at (1, 1
2 ) because f (1) is not defined.

Note how the graph supports our answers
lim
x!0

f (x)= 1 and lim
x!1

f (x)=1
2

. The vertical
asymptote at x = °1 reinforces the infinite
limits at °1.

y= f (x)

x

y

°1 1

1
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12.2 Limits of Fractional Expressions: A Summary
As you’ve no doubt noticed, a majority of the limits we’ve encountered so
far are limits of fractional expressions, like lim

x!c

f (x)
g(x)

. In working out such a
limit you won’t always know ahead of time whether it is going to be finite
or infinite. Certainly if lim

x!c
g(x) 6= 0 we can just apply a limit law to get the

finite answer

lim
x!c

f (x)
g(x)

=
lim
x!c

f (x)

lim
x!c

g(x)
.

And (as we’ve seen in this chapter) if lim
x!c

g(x) = 0 but lim
x!c

f (x) 6= 0, then

lim
x!c

f (x)
g(x)

will not exist but could be ±1. It is nice when things are so clear-
cut. But very often you will find yourself in the situation where

lim
x!c

f (x)

lim
x!c

g(x)
= 0

0
.

In this case you have to apply some cancellation or other cleverness before
getting a definitive answer. Here is a summary of how things can play out.

Summary
How to evaluate lim

x!c

f (x)
g(x)

. (Assuming both lim
x!c

f (x) and lim
x!c

g(x) exist.)

A. If lim
x!c

g(x) 6= 0, then lim
x!c

f (x)
g(x)

=
lim
x!c

f (x)

lim
x!c

g(x)
.

B. If lim
x!c

g(x)= 0 but lim
x!c

f (x) 6= 0, then the limit lim
x!c

f (x)
g(x)

does not exist.
But it (or its left- and right-hand limits) could equal 1 or °1. Use the
techniques outlined in the previous section.

C. If both lim
x!c

g(x)= 0 and lim
x!c

f (x)= 0, then lim
x!c

f (x)
g(x)

may or may not exist.
To find out, try to discover and cancel the expression that makes g(x)
approach zero. The limit should then have one of the forms A or B
above. (Most significant limits in calculus are of this type.)

For instance, part (a) of Example 12.4 fell into category A. Parts (b) and
(c) both followed category C, but once the simplification was made, one fell
into A and the other into B.
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12.3 Vertical Asymptotes
Let’s start with a careful definition of a vertical asymptote of a function.

Definition 12.2 The line x = c is a vertical asymptote of a function f

if either lim
x!c°

f (x)=±1 or lim
x!c+

f (x)=±1 (or lim
x!c

f (x)=±1).

For example, for the function
f from Example 12.4 (graphed
again on the right) we found
lim

x!°1°
f (x)=°1 and lim

x!°1+
f (x)=1,

so the line x = °1 is a vertical
asymptote for f . In saying “the

line x=°1” we mean the line whose

equation is x =°1, that is, the set
of all points (x, y) on the plane that
satisfy the equation x =°1. This

y= f (x)

x

y

°1

(°1, y)

line y = °1
is a vertical
asymptote

is the set of all points (°1, y) (where y could be any number), which is a
vertical line passing through the x-axis at °1. We might also say that “ f has

a vertical asymptote at x =°1’.” But please note that a vertical asymptote is
a line and not a number. This line is not actually a part of the graph of f ,
but it helps us understand and visualize the behavior of f .

A great many functions—such as polynomials and the trig functions
sin(x) and cos(x)—have no vertical asymptotes at all. But when vertical
asymptotes are present, they help us understand certain properties of a
function. Knowing that the line x = c is a vertical asymptote tells us that
even though f (c) may not be defined, the function f (x) “blows up” near c.

Vertical asymptotes tend to
happen at numbers x = c that
make the denominator of f (x)
zero. For example, the function
f (x)= tan(x)= sin(x)

cos(x)
(graphed on

the right) has infinitely many ver-
tical asymptotes, each occurring
at a number x = kº

2 (where k is an
integer) that makes the denomi-
nator cos(x) equal to zero.

x

y

°5º
2 °3º

2
°º

2
º
2

3º
2

5º
2

But the mere fact that a number x = c makes the denominator of f (x)
zero does not automatically signal that the line x = c is a vertical asymptote.
Definition 12.2 says we must confirm that lim

x!c°
f (x)=±1 or lim

x!c+
f (x)=±1.
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before saying for sure that the line x = c is a vertical asymptote. Here is a
useful rule of thumb for finding vertical asymptotes.

How to find the vertical asymptotes (if any) of f(x)
1. Identify the values x = c that make the denominator of f (x) equal to

zero or at which f (x) if undefined or discontinuous. These are the
candidates for the locations of the vertical asymptotes.

2. For each c obtained in the previous step, evaluate lim
x!c+

f (x) or lim
x!c°

f (x).
If you get ±1, then the line x = c is a vertical asymptote.

Example 12.5 Find all vertical asymptotes of the function f (x)= sin(x)
x2 ° x

.

Factoring the denominator yields f (x)= sin(x)
x2 ° x

= sin(x)
x(x°1)

. So the values x = 0

and x = 1 make the denominator zero, and these are the only two values for
which f is undefined. These are our candidates for the locations of vertical
asymptotes. Let’s first check to see if x = 0 yields a vertical asymptote by
examining the limit as x approaches 0. Notice that

lim
x!0

sin(x)
x2 ° x

= lim
x!0

sin(x)
x(x°1)

= lim
x!0

sin(x)
x

1
x°1

= lim
x!0

sin(x)
x

· lim
x!0

1
x°1

= 1 · 1
0°1

=°1.

Since we didn’t get ±1, there is no vertical asymptote at x = 0.
Next let’s check the candidate x = 1. Consider lim

x!1+

sin(x)
x2 ° x

. The numerator
approaches sin(1)º 0.841> 0, while the positive denominator shrinks to 0.
Thus lim

x!1+

sin(x)
x2 ° x

=1, so the line x = 1 is a vertical asymptote. In conclusion,
f has only one vertical asymptote, x = 1, as shown in the graph below (left).
Note the hole at (0,°1), as f (0) is undefined and lim

x!0
f (x)=°1.

y= f (x)= sin(x)
x2 ° x

x

y

°1
1

y= ln(x)

x

y

Be advised that not every vertical asymptote occurs where the function’s
denominator is zero. Indeed the function may not even have a denominator
yet still have a vertical asymptote. Consider the function ln(x) (above, right).
Our experience with the natural logarithm tells us that lim

x!0+
ln(x)=°1. so

the line x = 0 (the y-axis) is a vertical asymptote. Know your functions!
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Exercises for Chapter 12

In exercises 1–8 find the limits. (Not every one will be an infinite limit!)

1. lim
x!2+

x
2 ° x

x°2
2. lim

x!3+

x
2 ° x

x2 °9

3. lim
x!2

x
2 ° x

|x°2| 4. lim
x!1+

ln
µ

x
2 ° x

x°1

∂

5. lim
x! º

2
+
tan(x) 6. lim

x!º+

cos(x)
1+cos(x)

7. lim
x!0+

x°2
p

x
°p

x°
p

2
¢ 8. lim

x!0+

sin(x)
x2

Find the vertical asymptotes of the following functions.

9. f (x)= x
2 °4

5x2 °10x
10. f (x)= x

2 ° x°6
x2 °4x+3

11. f (x)= 7x
3 °7x

2

x2 °1
12. f (x)= x

2 +3x°15
x2 +9x+20

13. f (x)= 2x
2 °8

x2 +3x+2
14. f (x)= x

2 + x°2
x2 ° x°6

15. f (x)= x
2 °2x°3
x2 °1

16. f (x)= x
2 +5x+4

x2 +6x+8

17. f (x)= x
2 °1

7x3 °7x2 18. f (x)= 15°12x°3x
2

50°2x2

19. f (x)= x
2 + x°6

2x2 °18
20. f (x)= cos(x)

1+cos(x)

21. f (x)= tan(x2) 22. f (x)= sin(x°1)
x2 °1
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12.4 Exercises Solutions for Chapter 12

1. lim
x!2+

x
2 ° x

x°2
=1 (top approaches 2 and bottom is positive, approaching 0)

3. lim
x!2

x
2 ° x

|x°2| =1 (top approaches 2 and bottom is positive, approaching 0)

5. lim
x! º

2
+

tan(x)=°1 (x in 2nd quadrant of unit circle, so tan(x) is negative)

7. lim
x!0+

x°2
p

x
°p

x°
p

2
¢ = lim

x!0+

p
x

2 °
p

22

p
x
°p

x°
p

2
¢ = lim

x!0+

°p
x°

p
2
¢°p

x+
p

2
¢

p
x
°p

x°
p

2
¢

= lim
x!0+

p
x+

p
2

p
x

=1 (top approaching
p

2, bottom positive, approaching 0)

9. f (x)= x
2 °4

5x2 °10x
= (x°2)(x+2)

5x(x°2)
= x+2

5x
(for x 6= 2).

The denominator is 0 for x = 0 and x = 2, so these are the candidates for vertical
asymptotes. But lim

x!2
f (x)= lim

x!2
x+2
5x

= 2
5 6=±1, so there is no vertical asymptote at

x = 2. However, lim
x!0+

f (x)= lim
x!0+

x+2
5x

=1, so the line x = 0 is a vertical asymptote.

11. f (x)= 7x
3 °7x

2

x2 °1
= 7x

2(x°1)
(x°1)(x+1)

= 7x
2

x+1
(for x 6= 1).

The denominator is 0 for x = 1 and x =°1, so these are the candidates for vertical
asymptotes. But lim

x!1
f (x) = lim

x!1
7x

2

x+1 = 7
2 6= ±1, so no vertical asymptote at x = 1.

However, lim
x!°1+

f (x)= lim
x!°1+

7x
2

x+1 =1, so the line x =°1 is a vertical asymptote.

13. f (x)= 2x
2 °8

x2 +3x+2
= 2(x°2)(x+2)

(x+1)(x+2)
= 2(x°2)

x+1
(for x 6=°2)

The denominator is 0 for x =°1 and x =°2, so these are the candidates for vertical
asymptotes. But lim

x!°2
f (x)= lim

x!°2
2(x°2)

x+1 = 8 6=±1, so no vertical asymptote at x=°2.

But lim
x!°1+

f (x)= lim
x!°1+

2(x°2)
x+1 =°1, so the line x =°1 is a vertical asymptote.

15. f (x)= x
2 °2x°3
x2 °1

= (x+1)(x°3)
(x°1)(x+1)

= x°3
x°1

(for x 6= 2)

The denominator is 0 for x = 1 and x =°1, so these are the candidates for vertical
asymptotes. But lim

x!°1
f (x)= lim

x!°1
x°3
x°1 = 2 6=±1, so no vertical asymptote at x =°1.

However, lim
x!1+

f (x)= lim
x!1+

x°3
x°1 =°1, so the line x = 1 is a vertical asymptote.

17. f (x)= x
2 °1

7x3 °7x2 . = (x°1)(x+1)
7x2(x°1)

= x+1
7x2 (for x 6= 1).

The denominator is 0 for x = 0 and x = 1, so these are the candidates for vertical
asymptotes. But lim

x!1
f (x)= lim

x!1
x+1
7x2 = 2

7 6= ±1, so no vertical asymptote at x = 1.

However, lim
x!0+

f (x)= lim
x!0+

x+1
7x2 =1, so the line x = 0 is a vertical asymptote.
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19. f (x)= x
2 + x°6

2x2 °18
= (x°2)(x+3)

2(x°3)(x+3)
= x°2

2(x°3)
(for x 6=°3)

The denominator is 0 for x = 3 and x =°3, so these are the candidates for vertical
asymptotes. But lim

x!°3
f (x)= lim

x!°3
x°2

2(x°3)=
5

12 6=±1, so no vertical asymptote at x=°3.

However, lim
x!3+

f (x)= lim
x!3+

x°2
2(x°3) =1, so the line x = 3 is a vertical asymptote.

21. f (x)= tan(x2)

The vertical asymptotes happen where x
2 = º

2 +kº for k = 0,±,±2,±3, . . .. Therefore

the vertical asymptotes are the lines x =±
q

º
2 +kº for k = 0,±,±2,±3, . . ..


