Directions: Closed book, closed notes, no calculators. Put all phones, etc., away. You will need only a pencil or pen.

1. (6 points) Answer the questions about the functions graphed below.
(a) $\lim _{x \rightarrow 3} f(x)=2$
(b) $\lim _{x \rightarrow 0} \frac{2 f(x) g(x)+4 f(x)}{g(x)+2}=\lim _{x \rightarrow 0} \frac{2 f(x)(g(x)+2)}{g(x)+2}$

$$
=\lim _{x \rightarrow 0} 2 f(x)=2 \cdot 1=2
$$

(Because this limit had the form $0 / 0$, our strategy was to factor and cancel.)
(c) $\lim _{x \rightarrow 3} g\left(x^{2}-6\right)=g\left(\lim _{x \rightarrow 3}\left(x^{2}-6\right)\right)=g(3)=1$

2. (8 points) Draw the graph of one function $f(x)$ meeting all of the following conditions.
(a) The domain of f is $(-\infty, 1) \cup(1, \infty)$.
(b) The function f is continuous at all x except $x=-2, x=1$ and $x=4$.
(c) $\lim _{x \rightarrow 1} f(x)=-\infty$
(d) $\lim _{x \rightarrow-2} f(x)=3$
(e) $\lim _{x \rightarrow 4^{-}} f(x)=2$
(f) $\lim _{x \rightarrow 4^{+}} f(x)=0$
(g) $\lim _{x \rightarrow \infty} f(x)=1$

(h) $\lim _{x \rightarrow-\infty} f(x)=2$
3. (6 points) Find the limits
(a) $\lim _{x \rightarrow 5} \cos \left(\frac{\pi x}{3}\right)=\cos \left(\lim _{x \rightarrow 5} \frac{\pi x}{3}\right)=\cos \left(\frac{5 \pi}{3}\right)=\frac{1}{2}$
(b) $\lim _{x \rightarrow 0} \ln \left(4 x+e^{x+7}\right)=\ln \left(\lim _{x \rightarrow 0}\left(4 x+e^{x+7}\right)\right)=\ln \left(\left(4 \cdot 0+e^{0+7}\right)\right)=\ln \left(e^{7}\right)=7$
(c) $\lim _{x \rightarrow \infty} \frac{4 x^{3}-3 x+10}{5 x^{2}-6 x^{3}}=\lim _{x \rightarrow \infty} \frac{\left(4 x^{3}-3 x+10\right) \frac{1}{x^{3}}}{\left(5 x^{2}-6 x^{3}\right) \frac{1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{4-\frac{3}{x^{2}}+\frac{10}{x^{3}}}{\frac{5}{x}-6}=\frac{4-0+0}{0-6}=-\frac{2}{3}$
4. (8 points) Use a limit definition of the derivative to find the derivative of $f(x)=\sqrt{x+1}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{z \rightarrow x} \frac{f(z)-f(x)}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z+1}-\sqrt{x+1}}{z-x} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z+1}-\sqrt{x+1}}{z-x} \cdot \frac{\sqrt{z+1}+\sqrt{x+1}}{\sqrt{z+1}+\sqrt{x+1}} \\
& =\lim _{z \rightarrow x} \frac{\sqrt{z+1^{2}}+\sqrt{z+1} \sqrt{x+1}-\sqrt{x+1} \sqrt{z+1}-\sqrt{x+1^{2}}}{(z-x)(\sqrt{z+1}+\sqrt{x+1})} \\
& =\lim _{z \rightarrow x} \frac{(z+1)-(x+1)}{(z-x)(\sqrt{z+1}+\sqrt{x+1})} \\
& =\lim _{z \rightarrow x} \frac{(z-x)}{(z-x)(\sqrt{z+1}+\sqrt{x+1})} \\
& =\lim _{z \rightarrow x} \frac{1}{\sqrt{z+1}+\sqrt{x+1}} \\
& =\frac{1}{\sqrt{x+1}+\sqrt{x+1}} \quad \text { Answer: } \quad f^{\prime}(x)=\frac{1}{2 \sqrt{x+1}}
\end{aligned}
$$

5. (8 points) The graph of a function $f(x)$ is sketched below.
(a) Using the same coordinate axis, sketch a graph of the derivative $f^{\prime}(x)$.
(b) Suppose $g(x)=\frac{1}{f(x)}$. Find $g^{\prime}(0)$.

$$
\begin{aligned}
& g(x)=(f(x))^{-1} \\
& g^{\prime}(x)=-(f(x))^{-2} f^{\prime}(x)=-\frac{f^{\prime}(x)}{(f(x))^{2}} \\
& g^{\prime}(0)=-\frac{f^{\prime}(0)}{(f(0))^{2}}=-\frac{2}{(-1)^{2}}=--2
\end{aligned}
$$

6. (8 points) Find all x for which the tangent to the graph of $f(x)=x^{2} e^{x}-2$ at $(x, f(x))$ is horizontal.

We need to solve the equation $f^{\prime}(x)=0$

$$
\begin{aligned}
2 x e^{x}+x^{2} e^{x}-0 & =0 \\
x e^{x}(2+x) & =0
\end{aligned}
$$

As e^{x} is positive for any x, the only way this could be zero is if $x=0$ or $x=-2$.
Tangent is horizontal at $x=0$ or $x=-2$.
7. (32 points) Find the derivatives of these functions. You do not need to simplify your answers.
(a) $f(x)=5 x^{7}+3 x-\sqrt{2} \quad f^{\prime}(x)=35 x^{6}+3$
(b) $f(x)=\sin (x) \sec (x) \quad f^{\prime}(x)=\cos (x) \sec (x)+\sin (x) \sec (x) \tan (x)$
(c) $f(x)=\sin (\sec (x)) \quad f^{\prime}(x)=\cos (\sec (x)) \sec (x) \tan (x)$
(d) $f(x)=\sin ^{-1}\left(x^{3}+3 x\right)$

$$
f^{\prime}(x)=\frac{1}{\sqrt{1-\left(x^{3}+3 x\right)^{2}}}\left(3 x^{2}+3\right)=\longdiv { \frac { 3 x ^ { 2 } + 3 } { \sqrt { 1 - (x ^ { 3 } + 3 x) ^ { 2 } } } }
$$

(e) $f(x)=x+\frac{\ln (x)}{x} \quad f^{\prime}(x)=1+\frac{\frac{1}{x} x-\ln (x) \cdot 1}{x^{2}}=1+\frac{1+\ln (x)}{x^{2}}$
(f) $f(x)=\frac{1}{\sqrt{e^{x}+x}}=\left(e^{x}+x\right)^{-1 / 2} \quad f^{\prime}(x)=-\frac{1}{2}\left(e^{x}+x\right)^{-1 / 2-1}\left(e^{x}+1\right)=-\frac{e^{x}+1}{2{\sqrt{e^{x}}+x^{3}}^{3}}$
(g) $y=\cos \left(e^{x^{2}+x}\right) \quad f^{\prime}(x)=-\sin \left(e^{x^{2}+x}\right) D_{x}\left[e^{x^{2}+x}\right]=-\sin \left(e^{x^{2}+x}\right) e^{x^{2}+x}(2 x+1)$
(h) Given that $z=w \cos (w)$, find $\frac{d^{2} z}{d w^{2}}$.

$$
\begin{aligned}
& \frac{d z}{d w}=\cos (w)-w \sin (w) \\
& \frac{d^{2} z}{d w^{2}}=-\sin (w)-\sin (w)-w \cos (w)=-2 \sin (w)-w \cos (w)
\end{aligned}
$$

8. (8 points) A rocket has a height of $t+t^{2}$ meters t seconds after it is launched. How high is the rocket when its velocity is 101 meters per second?

The height at time t is $s(t)=t+t^{2}$ meters.
The velocity at time t is $v(t)=s^{\prime}(t)=1+2 t$ meters per second.
We are interested in finding the time t at which the velocity is 101 meters per second.
For this we must solve the equation $v(t)=101$.

$$
\begin{aligned}
v(t) & =101 \\
1+2 t & =101 \\
2 t & =100 \\
t & =50
\end{aligned}
$$

Thus at time $t=50$ seconds, the velocity is 101 meters per second.
At this time the heights is $s(50)=50+50^{2}=50+2500=2550$ meters
9. (8 points) Given the equation $\ln |x+y|=x y+1$, find y^{\prime}.

$$
\begin{aligned}
\ln |x+y| & =x y+1 \\
D_{x}[\ln |x+y|] & =D_{x}[x y+1] \\
\frac{1}{x+y}\left(1+y^{\prime}\right) & =1 \cdot y+x \cdot y^{\prime}+0 \\
1+y^{\prime} & =(x+y)\left(y+x y^{\prime}\right) \\
1+y^{\prime} & =x y+x^{2} y^{\prime}+y^{2}+x y y^{\prime} \\
y^{\prime}-x^{2} y^{\prime}-x y y^{\prime} & =x y+y^{2}-1 \\
y^{\prime}\left(1-x^{2}-x y\right) & =x y+y^{2}-1 \\
y^{\prime} & =\frac{x y+y^{2}-1}{1-x^{2}-x y}
\end{aligned}
$$

10. (8 points) A spherical balloon is deflating in such a way that its volume is decreasing at a rate of 18 cubic feet per hour. At what rate is the radius changing when the radius is 3 feet?
Know: $\frac{d V}{d t}=-18$ cubic feet per hour (negative because volume is decreasing).
Want: $\frac{d r}{d t}($ when $r=3)$

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
D_{t}[V] & =D_{t}\left[\frac{4}{3} \pi r^{3}\right] \\
\frac{d V}{d t} & =\frac{4}{3} \pi 3 r^{2} \frac{d r}{d t} \\
\frac{d V}{d t} & =4 \pi r^{2} \frac{d r}{d t} \\
\frac{d r}{d t} & =\frac{1}{4 \pi r^{2}} \frac{d V}{d t} \\
\frac{d r}{d t} & =\frac{1}{4 \pi r^{2}} \cdot(-18)=-\frac{9}{2 r^{2}} \\
\text { Answer: }\left.\frac{d r}{d t}\right|_{r=3} & =-\frac{9}{2 \pi 3^{2}}=-\frac{1}{2 \pi} \text { feet per hour }
\end{aligned}
$$

