\qquad
Directions: Closed book, closed notes, no calculators. Put all phones, etc., away. You will need only a pencil or pen.

1. (6 points) Answer the questions about the functions graphed below.
(a) $\lim _{x \rightarrow 3} f(x)=$
(b) $\lim _{x \rightarrow 0} \frac{2 f(x) g(x)+4 f(x)}{g(x)+2}=$
(c) $\lim _{x \rightarrow 3} g\left(x^{2}-6\right)=$

2. (8 points) Draw the graph of one function $f(x)$ meeting all of the following conditions.
(a) The domain of f is $(-\infty, 1) \cup(1, \infty)$.
(b) The function f is continuous at all x except $x=-2, x=1$ and $x=4$.
(c) $\lim _{x \rightarrow 1} f(x)=-\infty$
(d) $\lim _{x \rightarrow-2} f(x)=3$
(e) $\lim _{x \rightarrow 4^{-}} f(x)=2$
(f) $\lim _{x \rightarrow 4^{+}} f(x)=0$
(g) $\lim _{x \rightarrow \infty} f(x)=1$

(h) $\lim _{x \rightarrow-\infty} f(x)=2$
3. (6 points) Find the limits
(a) $\lim _{x \rightarrow 5} \cos \left(\frac{\pi x}{3}\right)=$
(b) $\lim _{x \rightarrow 0} \ln \left(4 x+e^{x+7}\right)=$
(c) $\lim _{x \rightarrow \infty} \frac{4 x^{3}-3 x+10}{5 x^{2}-6 x^{3}}=$
4. (8 points) Use a limit definition of the derivative to find the derivative of $f(x)=\sqrt{x+1}$.
5. (8 points) The graph of a function $f(x)$ is sketched below.
(a) Using the same coordinate axis, sketch a graph of the derivative $f^{\prime}(x)$.
(b) Suppose $g(x)=\frac{1}{f(x)}$. Find $g^{\prime}(0)$.

6. (8 points) Find all x for which the tangent to the graph of $f(x)=x^{2} e^{x}-2$ at $(x, f(x))$ is horizontal.
7. (32 points) Find the derivatives of these functions. You do not need to simplify your answers.
(a) $f(x)=5 x^{7}+3 x-\sqrt{2}$
(b) $f(x)=\sin (x) \sec (x)$
(c) $f(x)=\sin (\sec (x))$
(d) $f(x)=\sin ^{-1}\left(x^{3}+3 x\right)$
(e) $f(x)=x+\frac{\ln (x)}{x}$
(f) $f(x)=\frac{1}{\sqrt{e^{x}+x}}$
(g) $y=\cos \left(e^{x^{2}+x}\right)$
(h) Given that $z=w \cos (w)$, find $\frac{d^{2} z}{d w^{2}}$.
8. (8 points) A rocket has a height of $t+t^{2}$ meters t seconds after it is launched. How high is the rocket when its velocity is 101 meters per second?
9. (8 points) Given the equation $\ln |x+y|=x y+1$, find y^{\prime}.
10. (8 points) A spherical balloon is deflating in such a way that its volume is decreasing at a rate of 18 cubic feet per hour. At what rate is the radius changing when the radius is 3 feet?

Sphere formulas Volume: $V=\frac{4}{3} \pi r^{3} \quad$ Surface area: $S=4 \pi r^{2}$

