Name: \qquad

Directions: Closed book, closed notes, no calculators. Put all phones, etc., away. You will need only a pencil or pen.

1. (10 points) Answer the questions about the function f graphed below.
(a) $\lim _{h \rightarrow 0} \frac{f(-3+h)-f(-3)}{h}=$
(b) $\lim _{x \rightarrow \infty} f\left(\frac{1}{x}\right)=$
(c) $\lim _{x \rightarrow 0} \frac{1}{3+f(x)}=$
(d) $\lim _{x \rightarrow 2} \frac{\sin (f(x))}{f(x)+1}=$

(e) $\lim _{x \rightarrow 2} \frac{\sin (f(x))}{f(x)}=$
2. (20 points) Find the limits
(a) $\lim _{x \rightarrow 0^{+}} \sin ^{-1}(x-1)=$
(b) $\lim _{x \rightarrow e} 5 \ln \left(x^{3}\right)=$
(c) $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-7 x+12}=$
(d) $\lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{x-1}=$
3. (7 points) Use a limit definition of the derivative to find the derivative of $f(x)=\sqrt{1-x}$.
4. (7 points) An object moving on a straight line is $s(t)=t^{3}-3 t^{2}$ feet from its starting point at time t seconds. Find its acceleration when its velocity is -3 feet per second.
5. (7 points) Suppose $f(x)=x^{2}+2 x^{3}$ and $g(x)=x^{2}-2 x^{3}+48 x$. Find all x for which the tangent to $y=f(x)$ at $(x, f(x))$ is parallel to the tangent to $y=g(x)$ at $(x, g(x))$.
6. (35 points) Find the derivatives of these functions. You do not need to simplify your answers.
(a) $f(x)=\frac{\sqrt{2}}{x}+\pi x$
(b) $f(x)=\cos (x) \sin (x)$
(c) $f(x)=\cos (\sin (x))$
(d) $f(x)=\tan ^{-1}(-x)$
(e) $f(x)=\ln \left(e^{x^{2}-3 x}+x\right)$
(f) $f(x)=\frac{1}{x^{2}+5 x-7}$
(g) $f(x)=\sqrt{\frac{x+1}{x-1}}^{3}$
7. (7 points) Given the equation $\frac{x}{y}=y^{5}+x$, find y^{\prime}.
8. (7 points) Find the derivative of $f(x)=x^{\ln (x)}$.
