1. (10 pts.) This problem concerns the functions \(f(x) = \frac{\sqrt{x-1}}{5+\sin(x)} \) and \(g(x) = \sqrt{x} - 1 \).

 (a) State the domain of \(f(x) \).

 (b) \(f \circ g(x) = \)

2. (10 pts.) Consider the equation \(4 \cos^2(x) - 3 = 0 \). Find all solutions \(x \) that lie in the interval \([0, 2\pi)\).

3. (10 pts.) Sketch the graph of any function \(y = f(x) \) that meets the following four criteria: The line \(x = 4 \) is a vertical asymptote, the line \(y = -1 \) is a horizontal asymptote, \(f(-4) = 2 \), and \(\lim_{x \to -3} f(x) = 0 \).
4. (20 pts.) Answer the following questions about the function \(y = f(x) \) graphed below.

(a) \(f(1) = \)

(b) \(f \circ f(2) = \)

(c) \(\lim_{x \to 0} f(x) = \)

(d) \(\lim_{x \to -1} f(x) = \)

(e) \(\lim_{x \to -1^+} f(x) = \)

(f) \(\lim_{x \to -1^-} f(x) = \)

(g) \(\lim_{x \to \infty} f(x) = \)

(h) \(\lim_{x \to -\infty} f(x) = \)

(i) State an interval on which \(f(x) \) is continuous.

(j) State an \(x \)-value at which \(f(x) \) is discontinuous.

5. (28 pts.) Evaluate the following limits.
 If you want credit, show your steps, explain your reasoning, and carry limits as appropriate.

(a) \(\lim_{x \to -1} \frac{x^2 - 3x - 4}{x^2 + 5x + 4} = \)

(b) \(\lim_{h \to 0} \frac{\sqrt{5-h} - \sqrt{5}}{h} = \)

(c) \(\lim_{x \to -3} \frac{(-x + 3)(x + 5)}{|-x + 3|} = \)

(d) \(\lim_{\theta \to 0} \frac{\frac{1}{5} \sin(5\theta)}{\cos(\theta)} = \)
6. (12 pts.) Find all the horizontal asymptotes and vertical asymptotes of \(f(x) = \frac{x^2 + 5x + 4}{x^2 + 6x + 8} \).

7. (10 pts.) Find the value \(a \) such that the following \(f(x) \) is continuous at every number \(x \).

\[
f(x) = \begin{cases}
-x^2 + 2 & \text{if } x < 3 \\
ax & \text{if } x \geq 3
\end{cases}
\]