Name: __________________________

Score: __________

Directions. Solve the following questions in the space provided. Unless noted otherwise, you must show your work to receive full credit. This is a closed-book, closed-notes test. Calculators, computers, etc., are not used. Put a your final answer in a box where appropriate.

1. (20 points) Warmup: short answer.

(a) \(\frac{d}{dx} \left[\sin(x) + \cos(x) \right] = \)

(b) \(\frac{d}{dx} \left[\sin(x) \cos(x) \right] = \)

(c) \(\frac{d}{dx} \left[\sin(\cos(x)) \right] = \)

(d) \(\frac{d}{dx} \left[e^x \right] = \)

(e) \(\frac{d}{dx} \left[x^e \right] = \)

(f) \(\ln(1/e) = \)

(g) \(\sin^{-1}(1/2) = \)

(h) \(e^{\cos(\pi/2)} = \)

(i) \(\lim_{x \to -\infty} e^x = \)

(j) \(\lim_{x \to \infty} \tan^{-1}(x) = \)

7. (10 points) Sketch the graph of both \(y = \ln(x) \) and \(y = e^x \) below. Be sure to indicate which graph is which.

8. (5 points) \(\sin(\tan^{-1}(x)) = \)
2. (10 points) Answer the following questions concerning the function \(f(x) \) graphed below.

(a) Using the coordinate axis above, sketch the graph of the derivative \(y = f'(x) \).

(b) Suppose \(g(x) = (f(x))^3 \). Find \(g'(-2) \).

3. (15 points) An object moving on a straight line is \(s(t) = 2 + t + t^3 \) feet from its starting point at time \(t \) seconds.

(a) What is the object’s velocity at time \(t \)?

(b) What is its acceleration at time \(t \)?

(c) Find its velocity when its acceleration is 12 feet per second per second.

4. (10 points) This problem concerns the functions \(f(x) = x^3 - 3x \) and \(g(x) = 3x^2 + 6x \). Find all \(x \) for which the tangent to \(y = f(x) \) at \((x, f(x)) \) is parallel to the tangent to \(y = g(x) \) at \((x, g(x)) \).
5. (20 points) Find the following derivatives.

(a) \(\frac{d}{dx} \left[\ln(x) + \frac{1}{x} + \sqrt{x} + 3 \right] = \)

(b) \(\frac{d}{dx} \left[\left(\frac{x^2 + 5}{x + 1} \right)^4 \right] = \)

(c) \(\frac{d}{dx} \left[\tan^{-1}(5x) \right] = \)

(d) \(\frac{d}{dx} \left[x \sec(e^{10x}) \right] = \)

6. (10 points) This question concerns the equation \(x^2 + xy + y^2 = 7. \)

(a) Use implicit differentiation to find \(\frac{dy}{dx}. \)

(b) Use your answer from part (a) to find the equation of the tangent line to the graph of \(x^2 + xy + y^2 = 7 \) at the point \((2, -3).\)