7. (5 points) Simplify: \(\sec(\sin^{-1}(x)) = \)

8. (10 points) Sketch the graph of both \(y = e^x \) and \(y = \ln(x) \) below. Be sure to indicate which graph is which.

1. (20 points) Warmup: short answer.

(a) \(\frac{d}{dx} \left[\cos(x) + \ln(x) \right] = \)

(b) \(\frac{d}{dx} \left[\cos(x) \ln(x) \right] = \)

(c) \(\frac{d}{dx} \left[\cos \left(\ln(x) \right) \right] = \)

(d) \(\frac{d}{dx} \left[x^e \right] = \)

(e) \(\frac{d}{dx} \left[e^x \right] = \)

(f) \(\ln(\sqrt{e}) = \)

(g) \(\cos^{-1}(1/2) = \)

(h) \(\ln(\sin(\pi/2)) = \)

(i) \(\lim_{x \to 1} \tan^{-1}(x) = \)

(j) \(\lim_{x \to -\infty} e^x = \)
2. (10 points) Answer the following questions concerning the function $f(x)$ graphed below.

(a) Using the coordinate axis above, sketch the graph of the derivative $y = f'(x)$.

(b) Suppose $g(x) = x^2 f(x)$. Find $g'(3)$.

3. (15 points) An object moving on a straight line is $s(t) = t^3 - 3t^2$ feet from its starting point at time t seconds.

(a) What is the object's velocity at time t?

(b) What is its acceleration at time t?

(c) Find its acceleration when its velocity is -3 feet per second.

4. (10 points) This problem concerns the functions $f(x) = x^2 + 2x^3$ and $g(x) = x^2 - 2x^3 + 48x$.

Find all x for which the tangent to $y = f(x)$ at $(x, f(x))$ is parallel to the tangent to $y = g(x)$ at $(x, g(x))$.

5. (20 points) Find the following derivatives.

(a) \(\frac{d}{dx} \left[\tan(x) + \frac{1}{x^2} + e^2 + 3 \right] = \)

(b) \(\frac{d}{dx} \left[\sqrt{\frac{x^2 + 5}{x + 1}} \right] = \)

(c) \(\frac{d}{dx} \left[\sin^{-1}(\pi x) \right] = \)

(d) \(\frac{d}{dx} \left[xe^{\cos(3x)} \right] = \)

6. (10 points) This question concerns the equation \(xy^3 = xy + 6 \).

(a) Use implicit differentiation to find \(\frac{dy}{dx} \).

(b) Use your answer from part (a) to find the equation of the tangent line to the graph of \(xy^3 = xy + 6 \) at the point \((1, 2)\).