1. (1 point) \(\lim_{x \to 5} \sqrt{x} = \sqrt{5} \)

2. (1 point) \(\lim_{t \to 2} t = 2 \)

3. (4 points) \(\lim_{x \to -2} \frac{-2x - 4}{x^3 + 2x^2} = \lim_{x \to -2} \frac{-2(x + 2)}{x^2(x + 2)} = \lim_{x \to -2} \frac{-2}{x^2} = \frac{-2}{(-2)^2} = \frac{-2}{4} = -\frac{1}{2} \)

4. (6 points) Supply the following information for the function graphed below.

(a) \(\lim_{x \to 0} f(x) = 1 \)
(b) \(\lim_{x \to 1} f(x) = 0 \)
(c) \(f(1) = 2 \)

1. (1 point) \(\lim_{x \to 5} \sqrt{x} = \sqrt{5} \)

2. (1 point) \(\lim_{t \to 2} t = 2 \)

3. (4 points) \(\lim_{x \to 9} \sqrt{x} = \lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x \to 9} \frac{\sqrt{x} - 3}{(\sqrt{x} - 3)(\sqrt{x} + 3)} = \lim_{x \to 9} \frac{1}{\sqrt{x} + 3} = \frac{1}{\sqrt{9} + 3} = \frac{1}{6} \)

4. (6 points) Supply the following information for the function graphed below.

(a) \(\lim_{x \to 0} f(x) = 3 \)
(b) \(\lim_{x \to 1} f(x) = 2 \)
(c) \(f(1) = 1 \)
1. (1 point) \(\lim_{x \to 5} \sqrt{3} = \sqrt{3} \)

2. (1 point) \(\lim_{t \to 15} t = 15 \)

3. (4 points) \(\lim_{x \to 1} \frac{x^2 - x}{x - 1} = \lim_{x \to 1} \frac{1 - x}{x - 1} = \lim_{x \to 1} \frac{1}{x - 1} = \lim_{x \to 1} \frac{1}{x} - \frac{1}{1} = -1 \)

4. (6 points) Supply the following information for the function graphed below.

(a) \(\lim_{x \to 2} f(x) = 0 \)

(b) \(\lim_{x \to 1} f(x) = 1 \)

(c) \(f(1) = 3 \)

1. (1 point) \(\lim_{x \to 5} \sqrt{3} = \sqrt{3} \)

2. (1 point) \(\lim_{t \to 6} t = 6 \)

3. (4 points) \(\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1} = \lim_{x \to 1} \frac{(x-1)(x+2)}{(x+1)(x-1)} = \lim_{x \to 1} \frac{x+2}{x+1} = \frac{1+2}{1+1} = \frac{3}{2} \)

4. (6 points) Supply the following information for the function graphed below.

(a) \(\lim_{x \to 0} f(x) = 2 \)

(b) \(\lim_{x \to 1} f(x) = 1 \)

(c) \(f(1) = 0 \)