Instructions: Show work and put a box around your final answer.

1. \[\sum_{k=1}^{5} (3 + 2k) = \]

2. Suppose that \(f(x) \) is a function for which \(\int_{1}^{5} f(x) \, dx = 3 \) and \(\int_{1}^{7} f(x) \, dx = -6 \). Find \(\int_{5}^{7} f(x) \, dx \).

3. Write the integral that finds area under the curve \(y = \sin^2(x) \) from \(x = 0 \) to \(x = \pi \). Do not compute the integral.

1. \[\sum_{k=1}^{4} (8 - 2k) = \]

2. Suppose that \(f(x) \) is a function for which \(\int_{2}^{5} f(x) \, dx = 4 \) and \(\int_{2}^{8} f(x) \, dx = 9 \). Find \(\int_{5}^{8} f(x) \, dx \).

3. Write the definite integral that finds area under the curve \(y = e^x + 2x \) from \(x = 1 \) to \(x = 4 \). Do not compute the integral.
1. \[\sum_{k=1}^{4} (2k - 4) = \]

2. Suppose that \(f(x) \) is a function for which \(\int_{2}^{5} f(x) \, dx = 7 \) and \(\int_{2}^{8} f(x) \, dx = 8 \). Find \(\int_{5}^{8} f(x) \, dx \).

3. Write the definite integral that finds area under the curve \(y = \sqrt{\sin(x)} \) from \(x = 0 \) to \(x = \pi \). Do not compute the integral.