1. You are designing a window consisting of a rectangle with a half-circle on top, as illustrated. The client can only afford 1 meter of window framing material. The framing material runs around the outside of the window and between the rectangular and semicircular regions. What should the diameter of the half-circle be to maximize the area of the window?

(a) Label the diagram with the appropriate variables. Find the function to be optimized.

\[1 = h + d + h + d + \frac{\pi d}{2} \]
\[\text{Constraint: Framing material} \]
\[1 = 2h + (2 + \frac{\pi}{2})d \quad \text{(relationship)} \]
\[h = \frac{1}{2} - (1 + \frac{\pi}{4})d \]

(b) Find the critical points of this function.

\[A'(d) = \frac{\pi}{4}d + \frac{1}{2} - (2 + \frac{\pi}{2})d \quad \text{(never undefined)} \]
\[0 = \frac{\pi}{4}d + \frac{1}{2} - (2 + \frac{\pi}{2})d \quad (A' = 0) \]
\[\frac{-1}{2} = \frac{\pi}{4}d - (2 + \frac{\pi}{2})d \]
\[\frac{-1}{2} = d \left(\frac{\pi}{4} - 2 - \frac{\pi}{2} \right) = d \left(-2 - \frac{\pi}{4} \right) \Rightarrow d = \frac{1}{4 + \frac{\pi}{2}} \]

(c) Use the first or second derivative test on the critical points that make sense in the context of this problem.

\[A''(d) = \frac{\pi}{4} + \frac{1}{2} - 2 - \frac{\pi}{2} = \frac{-3}{2} - \frac{\pi}{4} < 0 \quad \text{for all } d \]

In particular, \(A''(\text{critical pt}) < 0 \) so by the second derivative test, \(d = \frac{1}{4 + \frac{\pi}{2}} \) is the location of a maximum.

(d) Answer the question.

The diameter should be \(\frac{1}{4 + \frac{\pi}{2}} \) meters.
1. You are designing a cylindrical can which has a bottom but no lid. The can must have a volume of 1000 cm3. What should the height and radius of the can be to minimize its surface area?

(a) Label the diagram with the appropriate variables. Find the function to be optimized.

Constraint - volume

$V = 1000 = \pi r^2 h$

$\frac{1000}{\pi r^2} = h$

(relationship between h and r)

Function to be optimized

$A = \pi r^2 + 2\pi rh$ (two variables!)

$A(r) = \pi r^2 + 2\pi \left(\frac{1000}{\pi r^2}\right)$

A single variable function

(b) Find the critical points of this function.

$A'(r) = 2\pi r - \frac{2000}{r^2}$

$O = 2\pi r - \frac{2000}{r^2}$ ($A' = 0$)

$2\pi r = \frac{2000}{r^2}$

$2\pi r^3 = 2000$ so $r = \sqrt[3]{\frac{1000}{\pi}} = \frac{10}{\sqrt[3]{\pi}}$ (critical point)

(c) Use the first or second derivative test on the critical points that make sense in the context of this problem.

We don't want a can with radius = 0, so ignore $r = 0$ critical point $A''(r) = 2\pi + \frac{4000}{r^3} > 0$ for all positive r

In particular, A'' (critical point) > 0 so by the second derivative test, $r = \frac{10}{\sqrt[3]{\pi}}$ is the location of a minimum of $A(r)$

(d) Answer the question.

$h = \frac{1000}{\pi r^2} = \frac{1000}{\pi} \frac{\pi^{-2/3}}{100} = 10 \pi^{-5/3} \text{ cm}$ and $r = \frac{10}{3\sqrt[3]{\pi}} \text{ cm}$
1. You are designing a cylindrical can (with both a top and a bottom) that must have a volume of 1000 cm³. What should the height and radius of the can be to minimize its surface area?

![Diagram of a cylinder with label h and r]

(a) Label the diagram with the appropriate variables. Find the function to be optimized.

Constraint - volume
\[V = 1000 = h \cdot \pi r^2 \]

\[\frac{1000}{\pi r^2} = h \]

(relationship between h and r)

Function to be optimized
\[A = \pi r^2 + \pi r^2 + 2\pi rh \]

(area of top & bottom)

\[A = 2\pi r^2 + 2\pi rh \]

(two ways!)

\[A(r) = 2\pi r^2 + \pi \frac{1000}{r^2} \]

\[A(r) = 2\pi r^2 + \frac{2000}{r} \]

(single variable function)

(b) Find the critical points of this function.

\[A'(r) = 4\pi r - \frac{2000}{r^2} \]

undefined at \(r = 0 \) (but \(r = 0 \) not in domain of \(A \), so not a critical point)

\[0 = 4\pi r - \frac{2000}{r^2} \quad (A' = 0) \]

\[\frac{2000}{r^2} = 4\pi r \]

\[2000 = 4\pi r^3 \quad \text{so} \quad r = \frac{\sqrt[3]{5000}}{\pi} \quad \text{(critical point)} \]

(c) Use the first or second derivative test on the critical points that make sense in the context of this problem.

We don't want a can with radius = 0, so don't bother with \(r = 0 \)

\[A''(r) = 4\pi + \frac{4000}{r^3} > 0 \quad \text{for all positive radius} \]

in particular, \(A''(\text{critical point}) > 0 \) so by the second derivative test, \(r = \frac{\sqrt[3]{5000}}{\pi} \) is the location of a minimum of \(A(r) \)

(d) Answer the question.

\[h = \frac{1000}{\pi r^2} = \frac{1000}{\pi} \left(\frac{500}{\pi} \right)^{-\frac{3}{2}} \text{ cm} \]

and \(r = \frac{\sqrt[3]{5000}}{\pi} \text{ cm} \)
1. You are designing a window consisting of a rectangle with a half-circle on top, as illustrated. The client can only afford 1 meter of window framing material which will run along the very outside portion of the window; no framing material is required between the rectangular and semicircular regions. What should the diameter of the half-circle be to maximize the area of the window?

(a) Label the diagram with the appropriate variables. Find the function to be optimized.

\[A = \frac{1}{2} \pi r^2 + h d \]

Remember. radius is half of diameter

\[A(d) = \frac{1}{2} \pi \left(\frac{d}{2} \right)^2 + \frac{h d}{2} \quad \text{(two variables!)} \]

\[A(d) = \frac{\pi}{8} d^2 + \frac{1}{2} d - \left(\frac{1}{2} + \frac{\pi}{4} \right) d^2 \]

(b) Find the critical points of this function.

\[A'(d) = \frac{\pi}{4} d + \frac{1}{2} - \left(1 + \frac{\pi}{2} \right) d \quad \text{(never undef)} \]

\[0 = \frac{\pi}{4} d + \frac{1}{2} - \left(1 + \frac{\pi}{2} \right) d \quad \text{(} A' = 0 \text{)} \]

\[-\frac{1}{2} = \frac{\pi}{4} d - d - \frac{\pi}{2} d = -d - \frac{\pi}{4} d = d \left(-1 - \frac{\pi}{2} \right) \]

\[d = \frac{1}{2 + \frac{\pi}{2}} \quad \text{so} \quad d = \frac{1}{2 + \frac{\pi}{2}} \quad \text{is the critical point of} \ A(d) \]

(c) Use the first or second derivative test on the critical points that make sense in the context of this problem.

\[A''(d) = \frac{\pi}{4} - (1 + \frac{\pi}{2}) = -1 - \frac{\pi}{4} < 0 \quad \text{for all} \ d \]

in particular, \[A''(\text{critical point}) < 0 \]

so by second derivative test, \[d = \frac{1}{2 + \frac{\pi}{2}} \]

is the location of a maximum of the area function.

(d) Answer the question.

The diameter should be \[\frac{1}{2 + \frac{\pi}{2}} \] meters.