Section 4.8 Antiderivatives

Finding the derivative of a function has been a major theme for us. Given a function $f(x)$, find its derivative $f'(x)$. That process is called differentiation.

Today we begin to look at the reverse process: Given $f'(x)$, can we find $f(x)$. This process is called antidifferentiation.

Definition A function $F(x)$ is an antiderivative of $f(x)$ if $F'(x) = f(x)$.

Example What is the antiderivative of $f(x) = 2x$?

Antiderivative: $F(x) = x^2$

Also: $F(x) = x^2 + C$

Also: $F(x) = x^2 + C$ where C is any constant.

Thus $f(x) = 2x$ has infinitely many antiderivatives! Some are sketched here.
Ex. Find an antiderivative of \(f(x) = x^2 + e^{-x} - 3\sin x \).

\[
\frac{1}{3}x^3 - e^{-x} + 3\cos x \quad \text{differentiate} \quad x^2 + e^{-x} - 3\sin x
\]

Antiderivative is \(F(x) = \frac{1}{3}x^3 - e^{-x} + 3\cos x \).

In general, \(F(x) = \frac{1}{3}x^3 - e^{-x} + 3\cos x + C \).

Definition If \(f(x) \) has an antiderivative \(F(x) \) (i.e., if \(F'(x) = f(x) \)), then \(F(x) + C \) is called the **most general antiderivative** of \(f(x) \) or the **indefinite integral** of \(f(x) \).

Note: \(F(x) + C \) stands for infinitely many functions, one for each possible value of \(C \). Thus \(F(x) + C \) is the set of all antiderivatives of \(f(x) \).

Notation The indefinite integral of \(f(x) \) is denoted as

\[
\int f(x) \, dx = F(x) + C
\]

Thus \(\int f(x) \, dx \) stands for all antiderivatives of \(f(x) \).

Ex. \[
\int x^3 \, dx = \frac{1}{4}x^4 + C
\]

Ex. \[
\int (x^2 + e^{-x} - 3\sin x) \, dx = \frac{1}{3}x^3 - e^{-x} + 3\cos x + C
\]

Ex. \[
\int \frac{2x}{1 + x^2} \, dx = \ln(1 + x^2) + C
\]

Ex. \[
\int \frac{1}{1 + x^2} \, dx = \tan^{-1} x + C
\]

Ex. \[
\int \frac{1}{x} \, dx = \ln |x| + C
\]

On page 179, text shows

\[
\frac{d}{dx} [\ln |x|] = \frac{1}{x}
\]

You want to say this is \(\ln x \), but that's not quite right, because \(\ln x \) is defined only for positive \(x \), so its derivative \(\frac{1}{x} \) is interpreted to have domain \((0, \infty)\).

However, here we might think of \(\frac{1}{x} \) with domain \((-\infty, 0) \cup (0, \infty)\).

Thus \(\int \frac{1}{x} \, dx = \ln |x| + C \).
Never Forget:
\[\int f(x) \, dx = F(x) + C \iff \frac{d}{dx} [F(x) + C] = f(x) \]

Any derivative formula, run in reverse, becomes an antiderivative formula. Here are the main ones:

\[\int k \, dx = kx + C \]
\[\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C \quad \text{Provided } n \neq -1 \]
\[\int x^{-1} \, dx = \ln|x| + C \quad \text{Here's what you do when } n = 1. \]
\[\int \sin x \, dx = -\cos x + C \]
\[\int \cos x \, dx = \sin x + C \]
\[\int \sec^2 x \, dx = \tan x + C \]
\[\int \csc^2 x \, dx = -\cot x + C \]
\[\int \sec x \tan x \, dx = \sec x + C \]
\[\int \csc x \cot x \, dx = -\csc x + C \]
\[\int e^x \, dx = e^x + C \]
\[\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C \]
\[\int \frac{1}{1+x^2} \, dx = \tan^{-1} x + C \]
\[\int \frac{1}{x\sqrt{x^2-1}} \, dx = \sec^{-1} x + C \]
\[\int a^x \, dx = \frac{1}{\ln(a)} \cdot a^x + C \]
\[\int k \, f(x) \, dx = k \int f(x) \, dx \]
\[\int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx. \]

Summary:
We now have two opposite operations on functions:
\[
\begin{align*}
\frac{d}{dx} [F(x) + C] & \rightarrow F(x) + C \\
\int f(x) \, dx & \rightarrow \frac{d}{dx} [F(x) + C]
\end{align*}
\]

More about all this next time!