Section 4.2 The Mean Value Theorem

The Mean Value theorem is a significant theoretical result. Although you will not use it often, it lays the foundation for Chapter 5, and is used in proofs of many fundamental results. We first address a preliminary result called Rolle’s Theorem.

Rolle’s Theorem: Suppose a function \(f(x) \) is continuous on an interval \([a, b]\) and differentiable on the interval \((a, b)\). (That is, \(f(x) \) exists and is defined at every number \(x \in (a, b) \).) If \(f(a) = f(b) \) then there exists at least one number \(c \in (a, b) \) for which \(f'(c) = 0 \).

\[
\begin{align*}
f(a) &= f(b) \\
\text{ Rolle's Theorem guarantees } & \text{ there is a number with } \\
& \text{ } f'(c) = 0, \text{ as illustrated.} \\
& \text{ Note that there may be several such } c, \text{ as is the case here.}
\end{align*}
\]

The text gives a careful proof of Rolle’s theorem, which you should read. But notice the Theorem is very intuitive.

Move a horizontal line down (or up) until it hits a point on the graph of \(y = f(x) \). The point of first contact has an \(x \)-coordinate \(c \) for which \(f'(c) = 0 \), as illustrated here.

From Rolle’s Theorem we get:

The Mean Value Theorem: Suppose \(f(x) \) is continuous on \([a, b]\) and differentiable on \((a, b)\) then there is a \(c \in (a, b) \) for which

\[
f'(c) = \frac{f(b) - f(a)}{b - a}.
\]

\[
\begin{align*}
slope &= f'(c) \\
\text{ and } \quad y &= f(x) \\
\text{ slope } &= \frac{f(b) - f(a)}{b - a} \\
\text{ MVT says there is at least one } c \text{ in } (a, b) \\
&\text{ with } f'(c) = \frac{f(b) - f(a)}{b - a} \text{ i.e. the two slopes are equal.}
\end{align*}
\]

Read the proof of the MVT in the text, but also note and appreciate that the theorem is very intuitive and common-senseical.
Note that there can be several \(c \) in \((a, b)\) with
\[
\xi'(c) = \frac{f(b) - f(a)}{b - a}.
\]
MVT says there is at least one such \(c \).

Example (A way of thinking about the MVT.)

Suppose you drive 30 miles in 20 minutes. (\(\frac{1}{3}\) hour). Did you break the speed limit? Your intuition says **YES** because your average velocity is \(\frac{30 \text{ mi}}{\frac{1}{3} \text{ hour}} = 90 \text{ mph}\). The mean value confirms this.

Say your position at time \(t \) is \(s(t) \).

\[
\begin{array}{c}
\xrightarrow{t = 0} s(x) \xrightarrow{t = \frac{1}{3}} \text{30 mi} \\
\end{array}
\]

MVT says at some time \(t = c \),
\[
s'(c) = \frac{s\left(\frac{1}{3}\right) - s(0)}{\frac{1}{3} - 0} = \frac{30}{\frac{1}{3}} = 90 \text{ mph}
\]

MVT simply says that at some instant \(t = c \), your instantaneous velocity equals your average velocity.

Mathematical Consequences of MVT.

Corollary 1 Suppose \(f'(x) = 0 \) on an interval \((a, b)\).
Then \(f(x) = C \) on \((a, b)\), where \(C \) is a constant.

Proof Take \(x \in (a, b) \). By MVT, there exists a \(c \in [a, x] \) with
\[
0 = f'(c) = \frac{f(x) - f(a)}{x-a}
\]
\[
\Rightarrow 0(a-x) = f(x) - f(a), \text{ i.e., } 0 = f(x) - f(a). \text{ Then } f(x) = -f(a) = C.
\]

Corollary 2 Suppose \(f'(x) = g'(x) \) on \((a, b)\).
Then \(f(x) = g(x) + C \) for some constant \(C \).

Proof If \(f'(x) = g'(x) \) on \((a, b)\), then \(f(x) - g(x) = 0 \) on \((a, b)\). That is, \((f+g)'(x) = 0 \) on \((a, b)\). By corollary 1,
\[
(f+g)x = C, \text{ i.e., } f(x) + g(x) = C
\]
Thus \(f(x) = g(x) + C \).

Corollary says that if \(f'(x) = g'(x) \), i.e., slopes of \(f(x) \) and \(g(x) \) agree then \(f(x) = g(x) + C \).