Section 4.3 The First Derivative Test

Goals
1. Find where \(f(x) \) increases/decreases
2. Locate local extrema of \(f(x) \)

1. Facts let \(I = (a, b) \) be an interval.
 - If \(f'(x) > 0 \) on \(I \) then \(f(x) \) increases on \(I \)
 - If \(f'(x) < 0 \) on \(I \) then \(f(x) \) decreases on \(I \)

Example
Find intervals on which \(f(x) = 2x^3 - 3x^2 + 5 \) increases/decreases

\[
f'(x) = 6x^2 - 6x = 6x(x - 1)
\]

After factoring \(f'(x) \), we can analyze its signs on various intervals:

\[
\begin{array}{c|cc}
& 0 & 1 \\
\hline
f'(x) & - & + \\
\end{array}
\]

Conclusions
- \(f(x) \) increases on \((- \infty, 0) \) and \((1, \infty) \)
- \(f(x) \) decreases on \((0, 1) \)

2. Now let's turn to our second goal: Finding local extrema.

The above example serves as a guide. Notice that:

- Local extrema happen at critical points. \(\{0 \) and \(1 \) above\}
- Local max happens when \(f(x) \) stops increasing, starts decreasing
- Local min happens when \(f(x) \) stops decreasing, start increasing

\[
y = f(x)
\]

+++ | -- | +++ | +++ | -- | +++ | -- | f(x)
Conclusion

First Derivative Test (for finding local extrema)

Suppose \(c \) is a critical point of \(f(x) \)
(i.e., \(c \) is in the domain of \(f(x) \) and \(f'(c) = 0 \) or \(f'(c) \) is undefined)
1. If \(f'(x) \) changes from + to - at \(c \), then \(f(x) \) has a local max at \(c \).
2. If \(f'(x) \) changes from - to + at \(c \), then \(f(x) \) has a local min at \(c \).
3. If \(f'(x) \) does not change sign at \(c \), the no local extremum at \(c \).

How to find the local extrema of \(f(x) \)

A. Find the critical points.
B. Apply 1st derivative test.

Example Find local extrema of \(f(x) = x e^x \) on \((-\infty, \infty) \)

A. \(f'(x) = (1)e^x + xe^x = e^x(1+x) = 0 \)

Only one critical point: \(c = -1 \)

Local minimum at \(x = -1 \)
No local max

Example Find local extrema of \(f(x) = \frac{3}{2}x^2 - \frac{2}{3}x \)

\(f'(x) = \frac{2}{3}x^3 - \frac{2}{3} = \frac{2}{3} \left(\frac{3}{x} - \frac{1}{3} \right) \)

f'(0) undefined \(\rightarrow \) critical points: 0 and 1.

Local max at \(x = 1 \)
Local min at \(x = 0 \)
Example. Find local extrema of \(f(x) = \frac{1}{x^2} = x^{-2} \)

\[f'(x) = -2x^{-3} = -\frac{2}{x^3} \]

\(y = f(x) \)

++ + + + - - - - - \(f'(x) \)

Can't have a local extrema at 0 if \(f(0) \) is undefined.

No local extrema.

There are no critical points.

\(x = 0 \) is not in the domain of \(f(x) \), so it is not a critical point.

Example. Find local extrema of \(f(x) = x + \sin x \)

\[f'(x) = 1 + \cos x \]

Critical points are those \(x = c \) for which \(f'(x) = 1 + \cos x = 0 \)

[Diagram showing critical points]

Critical pts. \(c = \pi + k 2\pi \)

\[= \pi (1 + 2k) \]

\[= \pi \text{m for odd m} \]

Happens when \(\cos x = -1 \), \(\text{i.e. } x = \pi + k 2\pi \) for \(k = 0, \pm 1, \pm 2, ... \)

No relative extrema.