Section 1.3 Review of Trig Functions (Continued)

Recall:
\[\cos(\theta) = \text{x-coordinate of } P \]
\[\sin(\theta) = \text{y-coordinate of } P \]

Notation
- OK to write \(\cos \theta \) for \(\cos(\theta) \).
 It's like writing \(f(x) \) for \(f(x) \)
- \(\sin^2 \theta \) means \((\sin(\theta))^2 \), etc.

Picture gives following Identities (True for any \(\theta \))
- \(\sin^2 \theta + \cos^2 \theta = 1 \)
- \(\sin(-\theta) = -\sin(\theta) \)
- \(\cos(-\theta) = \cos(\theta) \)
- \(\sin(\theta + 2\pi k) = \sin(\theta) \) \quad \text{for } k = 0, \pm 1, \pm 2, \ldots \)
- \(\cos(\theta + 2\pi k) = \cos(\theta) \)

More notation
Independent variable (of course) can be something besides \(\theta \).

\[\cos(\theta), \cos(x), \cos(\pi), \cos(\frac{x^3 + 1}{1 + x^2}), \text{ etc.} \]
Six Trig Functions

\[y = \sin(x) \]

\[y = \cos(x) \]

\[y = \tan(x) = \frac{\sin(x)}{\cos(x)} \]

\[y = \cot(x) = \frac{\cos(x)}{\sin(x)} \]

\[y = \sec(x) = \frac{1}{\cos(x)} \]

\[y = \csc(x) = \frac{1}{\sin(x)} \]
Solving Trig Equations

Ex Find all solutions: \(\cos(x) = \frac{1}{2} \)

Solutions: \(x = \frac{\pi}{3} + 2\pi k \) \(k = 0, \pm 1, \pm 2, \ldots \)
\(x = -\frac{\pi}{3} + 2\pi k \)

Ex Find the domain: \(f(x) = \frac{1}{1 + \sin(x)} \)

Domain: \(\{ x \mid x \in \mathbb{R}, x \neq \frac{3\pi}{2} + 2k\pi \} \) (where \(k = 0, \pm 1, \pm 2, \ldots \))

Ex Solve: \(\cos^2 x - \cos x = 0 \)
\(\cos(x)(\cos(x) - 1) = 0 \)
\(\cos(x) = 0 \quad \cos(x) = 1 \)
\(x = \frac{\pi}{2} + k\pi \quad x = 2k\pi \)

Solutions: \(x = \frac{\pi}{2} + k\pi \) \(k = 0, \pm 1, \pm 2, \pm 3, \ldots \)
\(x = 2\pi k \)
More Identities

\[\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \]
\[\sin(\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta \]
Addition Formulas

\[\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha \]
\[\sin(2\alpha) = 2 \cos \alpha \sin \alpha \]
Double Angle Formulas.

Solving Triangles

(finding lengths of missing sides, etc.)

By similar \(\triangle \)'s

\[\frac{\sin \theta}{1} = \frac{\text{OPP}}{\text{HYP}} \]
\[\frac{\cos \theta}{1} = \frac{\text{ADJ}}{\text{HYP}} \]
\[\frac{\sin \theta}{\cos(\theta)} = \frac{\text{OPP}}{\text{ADJ}} \]

\[\tan \theta = \frac{\text{OPP}}{\text{ADJ}} \]

Example

Find the missing side \(a \).

\[\frac{5}{a} = \frac{\text{OPP}}{\text{HYP}} = \tan \left(\frac{\pi}{2} \right) \]

\[a = \frac{5}{\tan \left(\frac{\pi}{2} \right)} \approx 10.3826 \]