Section 3.8 Derivatives of Inverse Functions and Logarithms

Goals Find (and apply) formulas for:

A \(\frac{d}{dx} \left[f^{-1}(x) \right] \)

B \(\frac{d}{dx} \left[\ln(x) \right] \)

C \(\frac{d}{dx} \left[\log_a(x) \right] \)

D \(\frac{d}{dx} \left[a^x \right] \)

(A) What is \(\frac{d}{dx} \left[f^{-1}(x) \right] \)?

Know: \(f \left(f^{-1}(x) \right) = x \) \{differentiate both sides\}

\(\frac{d}{dx} \left[f \left(f^{-1}(x) \right) \right] = \frac{d}{dx} [x] \)

\(f' \left(f^{-1}(x) \right) \frac{d}{dx} \left[f^{-1}(x) \right] = 1 \) \{chain rule\}

\(\frac{d}{dx} \left[f^{-1}(x) \right] = \frac{1}{f' \left(f^{-1}(x) \right)} \) \{divide both sides by \(f' \left(f^{-1}(x) \right) \}\)

Thus: \(\frac{d}{dx} \left[f^{-1}(x) \right] = \frac{1}{f' \left(f^{-1}(x) \right)} \) \{Goal A\}

(B) Now we’ll use this new rule to find \(\frac{d}{dx} \left[\ln(x) \right] \).

Recall: If \(f(x) = e^x \) then \(f'(x) = e^x \) and \(f^{-1}(x) = \ln(x) \)

\(\frac{d}{dx} \left[\ln(x) \right] = \frac{d}{dx} \left[f^{-1}(x) \right] = \frac{1}{f' \left(f^{-1}(x) \right)} = \frac{1}{e^{\ln(x)}} = \frac{1}{x} \)

Therefore

\[\frac{d}{dx} \left[\ln(x) \right] = \frac{1}{x} \]

\[\frac{d}{dx} \left[\ln(g(x)) \right] = \frac{1}{g(x)} \cdot g'(x) \]

i.e. \(\frac{d}{dx} \left[\ln(g(x)) \right] = \frac{g'(x)}{g(x)} \)
Examples:
\[
\frac{d}{dx}[\ln(x^2+3x+1)] = \frac{2x+3}{x^2+3x+1}
\]
\[
\frac{d}{dx}[\ln(x)] = \ln'(x) = \frac{1}{x}
\]
\[
\frac{d}{dx}[\ln(x^2+\sqrt{x})] = \frac{2x}{x^2+\sqrt{x}}
\]
\[
\frac{d}{dx}[\ln(\sin(x)+\frac{1}{x})] = \frac{\cos(x)}{\sin(x)} - \frac{1}{x^2} = \cot(x) - \frac{1}{x^2}
\]

C) What is \(\frac{d}{dx}[\log_a(x)]\)?

To answer this, remember the change of base formula:
\[
\log_a(x) = \frac{\ln(x)}{\ln(a)}
\]

Why it works:
\[
\log_a(x) = \frac{\log_a(x) \ln(a)}{\ln(a)} = \frac{\ln(x)}{\ln(a)} = \frac{\ln(x)}{\ln(a)}
\]

Thus
\[
\frac{d}{dx}[\log_a(x)] = \frac{d}{dx}[\frac{\ln(x)}{\ln(a)}] = \frac{1}{\ln(a)} \frac{d}{dx}[\ln(x)] = \frac{1}{\ln(a)} \cdot \frac{1}{x}
\]

New Formula:
\[
\frac{d}{dx}[\log_a(x)] = \frac{1}{x \ln(a)}
\]

D) What is \(\frac{d}{dx}[a^x]\)?

Note: \(a^x = e^{\ln(a^x)} = e^{x \ln(a)}\)

So...
\[
\frac{d}{dx}[a^x] = \frac{d}{dx}[e^{x \ln(a)}] = e^{x \ln(a)} \cdot \frac{d}{dx}[x \ln(a)]
\]

New Formula:
\[
\frac{d}{dx}[a^x] = a^x \ln(a)
\]
In calculus, we tend to use \(e^x \) and \(\ln(x) \) instead of \(a^x \) and \(\log_a(x) \), so the previous two formulas don’t come up very often. We round out today’s discussion with a significant technique.

Logarithmic Differentiation

Often the properties of \(\ln \) can be used to differentiate functions that no rules apply to directly. This process is called logarithmic differentiation.

Example Find the derivative of \(y = (x^2 + 1)^{x^3+x} \).

This is a variable expression to a variable power — it is neither a power function nor an exponential function. To find its derivative, we first take \(\ln \) of both sides and use log properties to simplify. Then we differentiate implicitly.

\[
\begin{align*}
y &= (x^2 + 1)^{x^3+x} \\
\ln(y) &= \ln((x^2 + 1)^{x^3+x}) \\
\ln(y) &= (x^3+x) \ln(x^2+1)
\end{align*}
\]

\[
\frac{d}{dy} \left[\ln(y) \right] = \frac{d}{dx} \left[(x^3+x) \ln(x^2+1) \right]
\]

\[
\frac{1}{y} \frac{dy}{dx} = (3x+1) \ln(x^2+1) + (x^3+x) \frac{2x}{x^2+1}
\]

\[
\frac{dy}{dx} = y \left((3x+1) \ln(x^2+1) + (x^3+x) \frac{2x}{x^2+1} \right)
\]

\[
\frac{dy}{dx} = \left(x^2 + 1 \right)^{x^3+x} \left((3x+1) \ln(x^2+1) + (x^3+x) \frac{2x}{x^2+1} \right)
\]

Read this section carefully. Check out how the text uses these ideas to show that the power rule \(\frac{d}{dx} [x^n] = nx^{n-1} \) works, not just when \(n \) is an integer, but for any real number \(n \).

Do lots of exercises. Master this material. It will be used often.