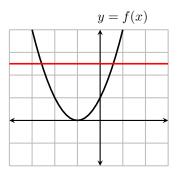

Inverse Function Diagnostic Quiz

Take this quiz to see if you need Lecture 4 (Inverse Functions). Answers are on page 2.

Important: Pencil or pen only. No calculators.

- 1. Does the function $f(x) = x^2 + 2x + 1$ have an inverse? If so, find its inverse.
- 2. Does the function $f(x) = \sqrt[3]{x-1}$ have an inverse? If so, find its inverse.
- 3. Does the function graphed below have an inverse? If so sketch the graph of $y = f^{-1}(x)$.



4. Suppose that f is an invertible function. Simplify $f^{-1}(f(x^3+5x))$.

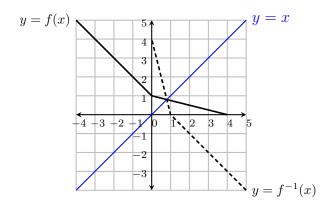
Here are the solutions. If your answers are not all correct, then you probably need Lecture 4.

- 1. Does the function $f(x) = x^2 + 2x + 1$ have an inverse? If so, find its inverse.
 - No. The function $f(x) = x^2 + 2x + 1 = (x+1)^2$ is a parabola, as shown below.

A horizontal lines crosses the graph more than once, so |f(x)| has no inverse.

2. Does the function $f(x) = \sqrt[3]{x-1}$ have an inverse? If so, find its inverse.

The graph of this function is the graph of $y = \sqrt[3]{x}$ moved one unit to the right. No horizontal line crosses the graph more than once, so the inverse exists. Let's now compute the inverse.


$$y = \sqrt[3]{x-1}$$

$$x = \sqrt[3]{y-1}$$
(interchange variables)
$$x^{3} = \sqrt[3]{y-1}^{3}$$
(solve for y)
$$x^{3} = y-1$$

$$y = x^{3}+1$$
Therefore $f^{-1}(x) = x^{3}+1$.

3. Does the function graphed below have an inverse? If so sketch the graph of $y = f^{-1}(x)$.

Yes. No horizontal line crosses the graph of y = f(x) more than once, so this function is one-to-one and therefore has an inverse. The graph $y = f^{-1}(x)$ of the inverse (shown dashed below) is the graph of y = f(x) reflected across the line y = x.

4. Suppose that f is an invertible function. Simplify $f^{-1}(f(x^3 + 5x))$. $f^{-1}(f(x^3 + 5x)) = \boxed{x^3 + 5x}$.