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Chapter 5

More on Logic: Quantification

We have learned how to use the symbols ^, _, ¬, ) and , to deconstruct many
English sentences into a symbolic form. We have also studied how this symbolic
form can help us understand the logical structure of sentences, and how di↵erent
sentences may actually have the same meaning (as in logical equivalence). This will
be particularly significant as we begin proving theorems in parts 3 and ?? of this
book.

But these logical symbols alone are not powerful enough to capture the full
meaning of every statement. To see why, imagine that we are dealing with some set
S =

�
x1, x2, x3, . . .

 
of integers. (For emphasis, say S is an infinite set.) Suppose

we want to express the statement “Every element of S is odd.” We would have to
write

P (x1) ^ P (x2) ^ P (x3) ^ P (x4) ^ · · · ,

where P (x) is the open sentence “x is odd.” And if we wanted to express “There is
at least one element of S that is odd,” we’d have to write

P (x1) _ P (x2) _ P (x3) _ P (x4) _ · · · .

The problem is that these expressions might never end.
To overcome this defect, we will introduce two new symbols 8 and 9. The symbol

8 stands for the phrase “for all” and 9 stands for “there exists.” Thus the above
statement “Every element of S is odd.” is written symbolically as

8x 2 S, P (x).

Similarly, “There is at least one element of S that is odd,” is written succinctly as

9x 2 S, P (x),

These new symbols are called quantifiers. They are the subject of this chapter. We
will see that when combined with ^, _, ¬, ) and ,, they form a system that allows
for the symbolic expression (and manipulation) of any mathematical statement.

91
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5.1 Quantifiers

To repeat, here are the main ideas of this chapter.

Definition 5.1. The symbols 8 and 9 are called quantifiers.

8 stands for the phrase “For all” or “For every,” or “For each,”
9 stands for the phrase “There exists a” or “There is a.”

Thus the statement

For every n 2 Z, 2n is even,

can be expressed in either of the following ways:

8n 2 Z, 2n is even,

8n 2 Z, E(2n).

Likewise, a statement such as

There exists a subset X of N for which |X| = 5.

can be translated as
9X, (X ✓ N) ^ (|X| = 5) or 9X ✓ N, |X| = 5 or 9X 2 P(N), |X| = 5.

The symbols 8 and 9 are called quantifiers because they refer in some sense to
the quantity (i.e., all or some) of the variable that follows them. Symbol 8 is called
the universal quantifier and 9 is called the existential quantifier. Statements
that contain them are called quantified statements. A statement beginning with
8 is called a universally quantified statement, and one beginning with 9 is called
an existentially quantified statement.

Example 5.1. The following English statements are paired with their translations
into symbolic form.

Every integer that is not odd is even.
8n 2 Z,¬(n is odd ) ) (n is even), or 8n 2 Z,¬O(n) ) E(n).

There is an integer that is not even.
9n 2 Z,¬E(n).

For every real number x, there is a real number y for which y3 = x.
8x 2 R, 9 y 2 R, y3 = x.

Given any two rational numbers a and b, it follows that ab is rational.
8 a, b 2 Q, ab 2 Q.

Given a set S (such as, but not limited to, N, Z, Q etc.), a quantified statement
of form 8x 2 S, P (x) is understood to be true if P (x) is true for every x 2 S. If
there is at least one x 2 S for which P (x) is false, then 8x 2 S, P (x) is a false
statement. Similarly, 9x 2 S, P (x) is true provided that P (x) is true for at least
one element x 2 S; otherwise it is false. Thus each statement in Example 5.1 is
true. Here are some that are false:
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Example 5.2. The following quantified statements are false. Each is paired with
its translation.

Every integer is even.
8n 2 Z, E(n).

There is an integer n for which n2 = 2.
9n 2 Z, n2 = 2.

For every real number x, there is a real number y for which y2 = x.
8x 2 R, 9 y 2 R, y2 = x.

Given any two rational numbers a and b, it follows that
p
ab is rational.

8 a, b 2 Q,
p
ab 2 Q.

Example 5.3. When a statement contains two quantifiers you must be very alert to
their order, for reversing the order can change the meaning. Consider the following
statement from Example 5.1.

8x 2 R, 9 y 2 R, y3 = x.

This statement is true, for no matter what number x is, there exists a number
y = 3

p
x for which y3 = x. Now reverse the order of the quantifiers to get the new

statement

9 y 2 R, 8x 2 R, y3 = x.

This new statement says that there exists a particular number y with the property
that y3 = x for every real number x. Since no number y can have this property, the
statement is false. The two statements above have entirely di↵erent meanings.

Quantified statements are often misused in casual conversation. Maybe you’ve
heard someone say “All students do not pay full tuition.” when they mean “Not
all students pay full tuition.” While the mistake is perhaps marginally forgivable
in casual conversation, it must never be made in a mathematical context. Do not
say “All integers are not even.” because that means there are no even integers.
Instead, say “Not all integers are even.”

Exercises for Section 5.1

Write the following as English sentences. Say whether they are true or false.

1. 8x 2 R, x2 > 0 2. 8x 2 R, 9n 2 N, xn � 0

3. 9 a 2 R, 8x 2 R, ax = x 4. 8X 2 P(N), X ✓ R

5. 8n 2 N, 9X 2 P(N), |X| < n 6. 9n 2 N, 8X 2 P(N), |X| < n

7. 8X ✓ N, 9n 2 Z, |X| = n 8. 8n 2 Z, 9X ✓ N, |X| = n

9. 8n 2 Z, 9m 2 Z,m = n+ 5 10. 9m 2 Z, 8n 2 Z,m = n+ 5
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5.2 More on Conditional Statements

It is time to address a very important point about conditional statements that
contain variables. To motivate this, let’s return to the following example concerning
integers x:

(x is a multiple of 6) ) (x is even).

As noted earlier, since every multiple of 6 is even, this is a true statement no matter
what integer x is. We could even underscore this fact by writing this statement as

8x 2 Z, (x is a multiple of 6) ) (x is even).

But now switch things around to get the di↵erent statement

(x is even) ) (x is a multiple of 6).

This is true for some values of x such as �6, 12, 18, etc., but false for others (such as
2, 4, etc.). Thus we do not have a statement, but rather an open sentence. (Recall
from Section 3.1 that an open sentence is a sentence whose truth value depends
on the value of a certain variable or variables.) However, by putting a universal
quantifier in front we get

8x 2 Z, (x is even) ) (x is a multiple of 6),

which is definitely false, so this new expression is a statement, not an open sentence.
In general, given any two open sentences P (x) and Q(x) about integers x, the
expression 8x 2 Z, P (x) ) Q(x) is either true or false, so it is a statement, not an
open sentence.

Now we come to the very important point. In mathematics, whenever P (x)
and Q(x) are open sentences concerning elements x in some set S (depending on
context), an expression of form P (x) ) Q(x) is understood to be the statement
8x 2 S, P (x) ) Q(x). In other words, if a conditional statement is not explicitly
quantified then there is an implied universal quantifier in front of it. This is done be-
cause statements of the form 8x 2 S, P (x) ) Q(x) are so common in mathematics
that we would get tired of putting the 8x 2 S in front of them.

Thus the following sentence is a true statement (as it is true for all x).

If x is a multiple of 6, then x is even.

Likewise, the next sentence is a false statement (as it is not true for all x).

If x is even, then x is a multiple of 6.

This leads to the following significant interpretation of a conditional statement,
which is more general than (but consistent with) the interpretation from Section
3.3.
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Definition 5.2. If P and Q are statements or open sentences, then

“If P , then Q,”

is a statement. This statement is true if it’s impossible for P to be true while Q
is false. It is false if there is at least one instance in which P is true but Q is false.

Thus the following are true statements:

If x 2 R, then x2 + 1 > 0.

If a function f is di↵erentiable on R, then f is continuous on R.
If a list has n entries, then it has n! permutations.

Likewise, the following are false statements:

If p is a prime number, then p is odd. (2 is prime.)

If f is a rational function, then f has an asymptote. (x2 is rational.)

If a set X has n elements, then |P(X)| = n2. (true only if |X| = 2.)

5.3 Translating English to Symbolic Logic

In writing (and reading) proofs of theorems, we must always be alert to the logical
structure and meanings of the sentences. Sometimes it is necessary or helpful to
parse them into expressions involving logic symbols. This may be done mentally or
on scratch paper, or occasionally even explicitly within the body of a proof. The
purpose of this section is to give you su�cient practice in translating English sen-
tences into symbolic form so that you can better understand their logical structure.
Here are some examples:

Example 5.4. Consider the Mean Value Theorem from Calculus:

If f is continuous on the interval [a, b] and di↵erentiable on (a, b), then

there is a number c 2 (a, b) for which f 0(c) = f(b)�f(a)
b�a .

Here is a translation to symbolic form:
⇣�

f cont. on [a, b]
�
^
�
f is di↵. on (a, b)

�⌘
)

⇣
9 c 2 (a, b), f 0(c) = f(b)�f(a)

b�a

⌘
.

Example 5.5. Consider Goldbach’s conjecture from Section 3.1:

Every even integer greater than 2 is the sum of two primes.

This can be translated in the following ways, where P is the set of prime numbers
and S = {4, 6, 8, 10, . . .} is the set of even integers greater than 2.

�
n 2 S

�
)

�
9 p, q 2 P, n = p+ q

�

8 n 2 S, 9 p, q 2 P, n = p+ q

These translations of Goldbach’s conjecture illustrate an important point. The
first has the basic structure (n 2 S) ) Q(n) and the second has structure
8 n 2 S, Q(n), yet they have exactly the same meaning. This is significant. Every
universally quantified statement can be expressed as a conditional statement.
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Fact 5.1. Suppose S is a set and Q(x) is a statement about x for any x 2 S.
The following statements mean the same thing:

8 x 2 S, Q(x)

(x 2 S) ) Q(x).

This fact is significant because so many theorems have the form of a conditional
statement. (The Mean Value Theorem is an example!) In proving a theorem we
have to think carefully about what it says. Sometimes a theorem will be expressed
as a universally quantified statement but it will be more convenient to think of it as
a conditional statement. Understanding the above fact allows us to switch between
the two forms.

We close this section with some final points. In translating a statement, be
attentive to its intended meaning. For example, don’t jump into automatically
replacing every “and” with ^ and “or” with _. An example:

At least one of the integers x and y is even.

Don’t be led astray by the presence of the word “and.” The meaning of the
statement is that one or both of the numbers is even, so it should be translated
with “or,” not “and”:

(x is even) _ (y is even).

Finally, the logical meaning of “but” can be captured by “and.” The sentence
“The integer x is even, but the integer y is odd,” is translated as

(x is even) ^ (y is odd).

Exercises for Section 5.3

Translate each of the following sentences into symbolic logic.
1. If f is a polynomial and its degree is greater than 2, then f 0 is not constant.

2. The number x is positive, but the number y is not positive.

3. If x is prime then
p
x is not a rational number.

4. For every prime number p there is another prime number q with q > p.

5. For every positive number ", there is a positive number � for which |x � a| < �
implies |f(x)� f(a)| < ".

6. For every positive number " there is a positive number M for which |f(x)� b| < ",
whenever x > M .

7. There exists a real number a for which a+ x = x for every real number x.

8. I don’t eat anything that has a face.

9. If x is a rational number and x 6= 0, then tan(x) is not a rational number.

10. If sin(x) < 0, then it is not the case that 0  x  ⇡.

11. There is a Providence that protects idiots, drunkards, children and the United
States of America. (Otto von Bismarck)
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12. You can fool some of the people all of the time, and you can fool all of the people
some of the time, but you can’t fool all of the people all of the time. (Abraham
Lincoln)

13. Everything is funny as long as it is happening to somebody else. (Will Rogers)

5.4 Negating Statements

Given a statement R, the statement ¬R is called the negation of R. If R is a
complex statement, then it is often the case that its negation ¬R can be written in
a simpler or more useful form. The process of finding this form is called negating
R. In proving theorems it is often necessary to negate certain statements. We now
investigate how to do this.

We have already examined part of this topic. DeMorgan’s laws

¬(P ^Q) = (¬P ) _ (¬Q) (5.1)

¬(P _Q) = (¬P ) ^ (¬Q) (5.2)

(from Section 3.6) can be viewed as rules that tell us how to negate the statements
P ^Q and P _Q. Here are some examples that illustrate how DeMorgan’s laws are
used to negate statements involving “and” or “or.”
Example 5.6. Consider negating the following statement.

R : You can solve it by factoring or with the quadratic formula.

Now, R means (You can solve it by factoring) _ (You can solve it with Q.F.), which
we will denote as P _Q. The negation of this is

¬(P _Q) = (¬P ) ^ (¬Q).

Therefore, in words, the negation of R is

¬R : You can’t solve it by factoring and you can’t solve it with
the quadratic formula.

Maybe you can find ¬R without invoking DeMorgan’s laws. That is good; you have
internalized the laws and are using them unconsciously.
Example 5.7. We will negate the following sentence.

R : The numbers x and y are both odd.

This statement means (x is odd) ^ (y is odd), so its negation is

¬
�
(x is odd) ^ (y is odd)

�
= ¬(x is odd) _ ¬(y is odd)

= (x is even) _ (y is even).

Therefore the negation of R can be expressed in the following ways:

¬R : The number x is even or the number y is even.
¬R : At least one of x and y is even.

Now let’s move on to a slightly di↵erent kind of problem. It’s often necessary to
find the negations of quantified statements. For example, consider ¬(8x 2 N, P (x)).
Reading this in words, we have the following:
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It is not the case that P (x) is true for all natural numbers x.

This means P (x) is false for at least one x. In symbols, this is 9x 2 N, ¬P (x).
Thus ¬(8x 2 N, P (x)) = 9x 2 N, ¬P (x). Similarly, you can reason out that
¬(9x 2 N, P (x)) = 8x 2 N, ¬P (x). In general:

¬(8x 2 S, P (x)) = 9x 2 S, ¬P (x), (5.3)

¬(9x 2 S, P (x)) = 8x 2 S, ¬P (x). (5.4)

Example 5.8. Consider negating the following statement.

R : The square of every real number is non-negative.

Symbolically, R can be expressed as 8x 2 R, x2 � 0, and thus its negation is
¬(8x 2 R, x2 � 0) = 9x 2 R, ¬(x2 � 0) = 9x 2 R, x2 < 0. In words, this is

¬R : There exists a real number whose square is negative.

Observe that R is true and ¬R is false. You may be able to get ¬R immediately,
without using Equation (5.3) as we did above. If so, that is good; if not, you will
probably be there soon.

If a statement has multiple quantifiers, negating it will involve several iterations
of Equations (5.3) and (5.4). Consider the following:

S : For every real number x there is a real number y for which y3 = x.

This statement asserts any real number x has a cube root y, so it’s true. Symboli-
cally S can be expressed as

8x 2 R, 9 y 2 R, y3 = x.

Let’s work out the negation of this statement.

¬(8x 2 R, 9 y 2 R, y3 = x) = 9x 2 R,¬(9 y 2 R, y3 = x)

= 9x 2 R, 8 y 2 R, ¬(y3 = x)

= 9x 2 R, 8 y 2 R, y3 6= x.

Therefore the negation is the following (false) statement.

¬S : There is a real number x for which y3 6= x for all real numbers y.

In writing proofs you will sometimes have to negate a conditional statement
P ) Q. The remainder of this section describes how to do this. To begin, look at
the expression ¬(P ) Q), which literally says “P ) Q is false.” You know from
the truth table for ) that the only way that P ) Q can be false is if P is true and
Q is false. Therefore ¬(P ) Q) = P ^ ¬Q.

¬(P ) Q) = P ^ ¬Q (5.5)

(In fact, in Exercise 12 of Section 3.6, you used a truth table to verify that these
two statements are indeed logically equivalent.)

Example 5.9. Negate the following statement about a particular (i.e., constant)
number a.
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R : If a is odd then a2 is odd.

Using Equation (5.5), we get the following negation.

¬R : a is odd and a2 is not odd.

Notice that R is true. Also ¬R is false, no matter the value of a.

Example 5.10. This example is like the previous one, but the constant a is replaced
by a variable x. We will negate the following statement.

R : If x is odd then x2 is odd.

As discussed in Section 5.2, we interpret this as the universally quantified statement

R : 8x 2 Z, (x odd) ) (x2 odd).

By Equations (5.3) and (5.5), we get the following negation for R.

¬
�
8x 2 Z, (x odd) ) (x2 odd)

�
= 9x 2 Z,¬

�
(x odd) ) (x2 odd)

�

= 9x 2 Z, (x odd) ^ ¬(x2 odd).

Translating back into words, we have

¬R : There is an odd integer x whose square is not odd.

Notice that R is true and ¬R is false.

The above Example 5.10 showed how to negate a conditional statement P (x) )
Q(x). This type of problem can sometimes be embedded in more complex negation.
See Exercise 5 below (and its solution).

Exercises for Section 5.4

Negate the following sentences.

1. The number x is positive, but the number y is not positive.

2. If x is prime, then
p
x is not a rational number.

3. For every prime number p, there is another prime number q with q > p.

4. For every positive number ", there is a positive number � such that |x � a| < �
implies |f(x)� f(a)| < ".

5. For every positive number ", there is a positive number M for which |f(x)� b| < "
whenever x > M .

6. There exists a real number a for which a+ x = x for every real number x.

7. I don’t eat anything that has a face.

8. If x is a rational number and x 6= 0, then tan(x) is not a rational number.

9. If sin(x) < 0, then it is not the case that 0  x  ⇡.

10. If f is a polynomial and its degree is greater than 2, then f 0 is not constant.

11. You can fool all of the people all of the time.

12. Whenever I have to choose between two evils, I choose the one I haven’t tried yet.
(Mae West)
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5.5 Logical Inference

There are four very significant reasons that we study logic. First, truth tables tell us
the exact meanings of the words such as “and,” “or,” “not” and so on. So, whenever
we encounter the “If..., then” construction in a mathematical context, logic tells us
exactly what is meant. Second, logical rules such as DeMorgan’s laws help us
correctly change certain statements into (potentially more useful) statements with
the same meaning. Third, logic is an essential ingredient in the design and flow of
algorithms.

This section covers the fourth reason that logic is important. It provides a means
of combining facts and information to produce new facts.

To begin, suppose we know that a statement of form P ) Q is true. This tells
us that whenever P is true, Q will also be true. By itself, P ) Q being true does
not tell us that either P or Q is true (they could both be false, or P could be false
and Q true). However if in addition we happen to know that P is true then it must
be that Q is true. This is called a logical inference: Given two true statements
we can infer that a third statement is true. In this instance true statements P ) Q
and P are “added together” to get Q. This is described below with P ) Q and
P stacked one atop the other with a line separating them from Q. The intended
meaning is that P ) Q combined with P produces Q.

P ) Q
P
Q

This is a very frequently-used pattern of thought. (In fact, it is exactly the pattern
we used in the example on page 45.) This rule even has a name. It is called the
modus ponens rule.

Two other logical inferences, called modus tollens and elimination are listed
below. In each case you should convince yourself (based on your knowledge of the
relevant truth tables) that the truth of the statements above the line forces the
statement below the line to be true.

Modus Ponens Modus Tollens Elimination

P ) Q
P
Q

P ) Q
¬Q
¬P

P _Q
¬P
Q

It is important to internalize these rules. (You surely already use at least modus
ponens and elimination in daily life anyway.) But don’t bother remembering their
names; very few working mathematicians and computer scientists can recall the
names of these rules, though they use the rules constantly. The names are not
important, but the rules are.

Three additional logical inferences are listed below. The first states the obvious
fact that if P and Q are both true, then so is the statement P ^ Q. On the other
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hand, P ^ Q being true forces P (also Q) to be true. Finally, if P is true, then
P _Q must be true, no matter what statement Q is.

P
Q
P ^Q

P ^Q
P

P
P _Q

These inferences are so intuitively obvious that they scarcely need to be men-
tioned. However, they represent certain patterns of reasoning that we will frequently
apply to sentences in proofs, so we should be cognizant of the fact that we are using
them.
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Solutions for Chapter 5

Section 5.1

Write the following as English sentences. Say whether the statements are true or false.
1. 8x 2 R, x2 > 0

Answer: For every real number x, x2 > 0.
Also: For every real number x, it follows that x2 > 0.
Also: The square of any real number is positive. (etc.)
This statement is FALSE. Reason: 0 is a real number, but it’s not true that 02 > 0.

3. 9 a 2 R, 8x 2 R, ax = x.
Answer: There exists a real number a for which ax = x for every real number x.
This statement is TRUE. Reason: Consider a = 1.

5. 8n 2 N, 9X 2 P(N), |X| < n
Answer: For every natural number n, there is a subset X of N with |X| < n.
This statement is TRUE. Reason: Suppose n 2 N. Let X = ;. Then |X| = 0 < n.

7. 8X ✓ N, 9n 2 Z, |X| = n
Answer: For any subset X of N, there exists an integer n for which |X| = n.
This statement is FALSE. For example, the set X = {2, 4, 6, 8, . . .} of all even
natural numbers is infinite, so there does not exist any integer n for which |X| = n.

9. 8n 2 Z, 9m 2 Z,m = n+ 5
Answer: For every integer n there is another integer m such that m = n+ 5.
This statement is TRUE.

Section 5.3

Translate each of the following sentences into symbolic logic.
1. If f is a polynomial and its degree is greater than 2, then f 0 is not constant.

Translation: (P ^Q) ) R, where
P : f is a polynomial,
Q : f has degree greater than 2,
R : f 0 is not constant.

3. If x is prime then
p
x is not a rational number.

Translation: P ) ¬Q, where
P : x is prime,
Q :

p
x is a rational number.

5. For every positive number ", there is a positive number � for which |x � a| < �
implies |f(x)� f(a)| < ".
Translation: 8 " 2 R, " > 0, 9 � 2 R, � > 0, (|x� a| < �) ) (|f(x)� f(a)| < ")

7. There exists a real number a for which a+ x = x for every real number x.
Translation: 9a 2 R, 8x 2 R, a+ x = x

9. If x is a rational number and x 6= 0, then tan(x) is not a rational number.
Translation: ((x 2 Q) ^ (x 6= 0)) ) (tan(x) /2 Q)

11. There is a Providence that protects idiots, drunkards, children and the United
States of America.

One translation is as follows. LetR be union of the set of idiots, the set of drunkards,
the set of children, and the set consisting of the USA. Let P be the open sentence
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P (x): x is a Providence. Let S be the open sentence S(x, y): x protects y. Then
the translation is 9x, 8 y 2 R,P (x) ^ S(x, y).

(Notice that, although this is mathematically correct, some humor has been lost in
the translation.)

13. Everything is funny as long as it is happening to somebody else.
Translation: 8x, (¬M(x) ^ S(x)) ) F (x),
where M(x): x is happening to me, S(x): x is happening to someone, and F (x) : x
is funny.

Section 5.4

Negate the following sentences.

1. The number x is positive, but the number y is not positive.
The “but” can be interpreted as “and.” Using DeMorgan’s law, the negation is:
The number x is not positive or the number y is positive.

3. For every prime number p, there is another prime number q with q > p.
Negation: There is a prime number p such that for every prime number q, q  p.
Also: There exists a prime number p for which q  p for every prime number q.
(etc.)

5. For every positive number " there is a positive number M for which |f(x)� b| < "
whenever x > M .
To negate this, it may be helpful to first write it in symbolic form. The statement
is 8" 2 (0,1), 9M 2 (0,1), (x > M) ) (|f(x)� b| < ").

Working out the negation, we have

¬
�
8" 2 (0,1), 9M 2 (0,1), (x > M) ) (|f(x)� b| < ")

�
=

9" 2 (0,1),¬
�
9M 2 (0,1), (x > M) ) (|f(x)� b| < ")

�
=

9" 2 (0,1), 8M 2 (0,1),¬
�
(x > M) ) (|f(x)� b| < ")

�
.

Finally, using the idea from Example 5.10, we can negate the conditional statement
that appears here to get

9" 2 (0,1), 8M 2 (0,1), 9x, (x > M) ^ ¬(|f(x)� b| < ")
�
.

Negation: There exists a positive number " with the property that for every positive
number M , there is a number x for which x > M and |f(x)� b| � ".

7. I don’t eat anything that has a face.
Negation: I will eat some things that have a face.
(Note. If your answer was “I will eat anything that has a face.” then that is wrong,
both morally and mathematically.)

9. If sin(x) < 0, then it is not the case that 0  x  ⇡.
Negation: There exists a number x for which sin(x) < 0 and 0  x  ⇡.

11. You can fool all of the people all of the time.

There are several ways to negate this, including:

There is a person that you can’t fool all the time. or

There is a person x and a time y for which x is not fooled at time y.

(But Abraham Lincoln said it better.)


