
July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 67

Chapter 4

Boolean Expressions and Circuits

George Boole (1815-1864) was among the first to explore the connections between
logic and algebra, which is the topic of this section. Many of the objects that we
will study bear his name. We will define what are called Boolean variables and
Boolean expressions, and we will learn how to manipulate them. Sections 4.2–4.4
will apply this to computer circuitry. Although sections 4.1–4.4 are not needed for
the remainder of this text, they do provide context for Chapter 22.

4.1 Boolean Expressions

The discussion begins with truth tables. In constructing truth tables, we saw how
logic expressions such as P , (Q _ R) can be true or false, depending on whether
P , Q and R are true or false. In doing this, we have regarded P , Q and R as
statements (or open sentences) that could potentially be true or false. But (at least
in writing truth tables) we tend not to assign any particular meaning to P , Q and
R. It is as if they are variables that can take on one of the two values T or F.

This outlook can be very convenient. A Boolean variable is a symbol that
is allowed to have either the value T (true) or F (false). In this text we will use
the upper case letters at the end of the alphabet (W,X, Y, Z) for Boolean variables.
Thus we might write P , (Q_R) alternatively as X , (Y _Z) and interpret this
as an expression involving variables rather than statements.

It is common (especially in computer applications) to write 0 for F and 1 for T,
so that a Boolean variable can have either the value 0 or 1. We will follow this
convention for the rest of this chapter (though afterwards we revert to T and F).
So instead of T _ F = F and T ^ F = T we will write 1 _ 0 = 0 and 1 ^ 0 = 1, etc.
Following this convention, the truth tables for ^, _ and ¬ are as follows.

X Y X ^ Y

1 1 1

1 0 0

0 1 0

0 0 0

X Y X _ Y

1 1 1

1 0 1

0 1 1

0 0 0

X ¬X
1 0

0 1

67



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 68

68 Discrete Math Elements

A Boolean expression is an expression formed by combining Boolean variables
with ^, _ and ¬. Thus ¬X _Y and (X ^Y )_ (¬X ^¬Y ) are Boolean expressions,
as is W ^ (X _ Y ). Single variables, like X or Y , are also a Boolean expressions.

Boolean expressions do not use ) and ,, as these operations can be expressed
with ^, _ and ¬. Indeed, Exercise 3 of the previous section showedX)Y = ¬X_Y .
Similarly, the truth table on page 59 shows that X , Y = (X ^ Y )_ (¬X ^¬Y ).
So as long as we have ^, _ and ¬, we don’t technically need ) and ,.

Be aware that 0 and 1 are each themselves considered to be Boolean expressions.
The reason is that X ^ ¬X = 0, and X _ ¬X = 1. no matter whether X is 0 or 1.
So since 0 and 1 each equal Boolean expressions, they are Boolean expressions.

Given a Boolean expression, you should have no trouble writing its truth table.
For example, below is the truth table for (X ^ Y ) _ (¬X ^ ¬Y ).

X Y (X ^ Y ) _ (¬X ^ ¬Y )

1 1 1
1 0 0
0 1 0
0 0 1

You can think of a Boolean expression, like (X ^ Y ) _ (¬X ^ ¬Y ), as being a
function f(X,Y ) of two variables, given by the rule

f(X,Y ) = (X ^ Y ) _ (¬X ^ ¬Y ).

For a given input, such as X = 0, Y = 1, the output is

f(0, 1) = (0 ^ 1) _ (¬0 ^ ¬1) = (0 ^ 1) _ (1 ^ 0) = 0.

The truth table for (X ^Y )_ (¬X ^¬Y ) talleys the output value for every possible
input of X and Y . Similarly, an expression like X _ (Y ^¬Z) is a function of three
variables, and so on.

Next we consider a type of problem that in a sense is the reverse of writing a
truth table. Suppose we have in mind a set of outputs for a Boolean expression,
but we don’t know the expression. For instance, consider the outputs in this table.

X Y ?

1 1 1
1 0 0
0 1 1
0 0 0

Can we find a Boolean expression f(X,Y ) for the top of the third column, so that
this is its truth table?

The only rows with output 1 are the first and third row. The Boolean expression
X^Y equals 1 on the first row and 0 on all others. Likewise ¬X^Y equals 1 on the
third row and 0 on all others. Therefore (X ^ Y ) _ (¬X ^ Y ) equals 1 on the first
and third row, but it equals 0 on the other two rows. This gives our answer. Head



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 69

Boolean Expressions and Circuits 69

the third column of the table with the Boolean expression (X ^ Y ) _ (¬X ^ Y ), as
shown below.

X Y (X ^ Y ) _ (¬X ^ Y )

1 1 1
1 0 0
0 1 1
0 0 0

Example 4.1. Find a Boolean expression for the following table.

X Y ?

1 1 1
1 0 1
0 1 0
0 0 1

Solution. This table has output is 1 in the first, second and fourth row, but 0 in the
third. The expression X ^Y equals 1 on the first row and 0 on all others. Likewise,
X ^ ¬Y equals 1 on the second row and 0 on all others. Also ¬X ^ ¬Y equals 1
on the fourth row but 0 on all others. Therefore (X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ ¬Y )
equals 1 on every row except the third. So this expression can replace the “?” in
the table above.

The answer (X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ ¬Y ) to this example is not the only
answer that works. The simpler expression X _¬Y also works, and would perhaps
be a preferable answer. The point is that we have a technique that gives a viable
expression for a table. Section 4.3 addresses the issue of simplifying such expressions.

Example 4.2. Find a Boolean expression for the following table.

X Y Z ?

1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 1
0 1 0 1
0 0 1 0
0 0 0 0

Solution. This table has output 1 only on the fourth, fifth and sixth rows. The
expression X ^ ¬Y ^ ¬Z equals 1 on the fourth row, but 0 on all other rows. The
expression ¬X ^Y ^Z equals 1 on the fifth row, but is 0 on all other rows. Finally,
¬X ^ Y ^ ¬Z equals 1 on the sixth row, but is 0 on all other rows. Therefore

(X ^ ¬Y ^ ¬Z) _ (¬X ^ Y ^ Z) _ (¬X ^ Y ^ ¬Z)

equals 1 on the on the fourth, fifth and sixth rows, but is 0 on all others. This is a
Boolean expression for the table.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 70

70 Discrete Math Elements

This kind of problem is important, because in applications you may need to find
a Boolean expression that models real-world data that is expressed as a truth table.

The answers to the previous two examples, (X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ ¬Y )
and (X ^¬Y ^¬Z)_ (¬X ^Y ^Z)_ (¬X ^Y ^¬Z), have a special form. They are
made up of parenthesized expressions (called clauses) joined by _, whereas each
clause consists of variables (or negations of variables) joined by ^, Expressions like
this are said to have disjunctive normal form (DNF), and we call them DNF
expressions. For instance, (X^Z)_(¬X^Y ^Z) is DNF, but (X_Z)^(¬X_Y _Z)
is not. Also X _ (¬Y ^ Z) _ (X ^ Z) is DNF (the leading X is the only variable
in its clause, so parentheses are not needed). Likewise, X _ Y _ Z is DNF (three
one-variable clauses), and so is X ^ Y ^ Z (a single 3-variable clause).

In finding a Boolean expression for a truth table (as in Examples 4.1 and 4.2)
we arrive at DNF expressions in which each clause contains all variables. We say
such an expression is full-DNF.

The exercises below ask you to find DNF expressions for truth tables. They
should convince you that every Boolean expression is equal to a (possibly di↵erent)
DNF expression. For example, X ^ (Y _ Z) is not DNF, but by the distributive
law (Equation (3.4) on page 60), X ^ (Y _Z) = (X ^ Y )_ (X ^Z), which is DNF.
Alternatively you could write the truth table for X ^ (Y _Z), then find its DNF as
in the examples above.

Exercises for Section 4.1

Find a DNF Boolean expression for each of the truth tables.

1.

X Y ?

1 1 0
1 0 1
0 1 1
0 0 0

2.

X Y ?

1 1 0
1 0 1
0 1 1
0 0 1

3.

X Y ?

1 1 1
1 0 0
0 1 1
0 0 0

4.

X Y ?

1 1 0
1 0 0
0 1 1
0 0 0

5.

X Y Z ?

1 1 1 0
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

6.

X Y Z ?

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

7.

X Y Z ?

1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

8.

X Y Z ?

1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 0

9. In addition to disjunctive normal form, there is conjunctive normal form (CNF).
In CNF, the clauses are joined by ^, and each clause consists of variables (or their
negations) joined by _. For example, (X _ Y _ ¬Z) ^ (X _ ¬Y _ Z) ^ (X _ Z) is
CNF. Explain how any Boolean expression equals some CNF expression. (Hint: By
DeMorgan’s law, the negation of DNF is CNF. Also, consider how the truth tables
for a Boolean expression and its negation are related.)



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 71

Boolean Expressions and Circuits 71

4.2 Logic Circuits

There is a striking connection between logic and computer circuitry. At the most
basic level, a computer’s memory can be viewed as a very long sequence or array
of Boolean variables (called bits), each of which holds a value of 0 or 1. Internally,
each 0 may be represented by a low (or zero) voltage, and each 1 by a high voltage.
As the computer runs, the variables may change values according to instructions
from the central processing unit. At any point in time, the value a particular bit may
depend on the values of other bits. The value of that bit, then, can be expressed as a
Boolean expression (or function) involving the other bits. Thus Boolean expressions
(and hence logic operators) are at the heart of computation.

Certain physical electronic components called logic gates emulate the logical
operators _, ^ and ¬. Each gate has a visual schematic description. The so-called
OR gate is represented as follows. You can think of it as having two input wires
labeled X and Y on the left, and one output wire on the right. Each input can
carry a value of 0 or 1 (you can think of this as a voltage), and the output is X _Y .
indexOR gate

OR gate: OR
X
Y

X _ Y

input output
X Y X _ Y
1 1 1
1 0 1
0 1 1
0 0 0

Likewise, there is an AND gate whose input mirrors the ^ operator. indexAND
gate

AND gate: AND
X
Y

X ^ Y

input output
X Y X ^ Y
1 1 1
1 0 0
0 1 0
0 0 0

The NOT gate toggles its input, so the output is the opposite value of the input.
Its schematic is as follows. indexNOT gate

NOT gate: X ¬X

input output
X ¬X
1 0
0 1

These three gates encode the operators ^, _ and ¬, so any Boolean expression
can be built from them. For instance, here is a circuit for ¬Z _ (X ^ Y ).

X
Y

Z
¬Z _ (X ^ Y )

X ^ Y

¬Z



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 72

72 Discrete Math Elements

Example 4.3. Design a circuit with inputs X,Y , and output (¬X^Y )_(X^¬Y ).

Solution. We will build this in pieces. Begin with the circuit below, which negates
X, then feeds the negation into an AND gate with Y . The output is ¬X ^ Y .

X
Y

¬X ^ Y

Similarly, the output of the circuit below is X ^ ¬Y .

X
Y

X ^ ¬Y

Now hook these together by connecting theirX inputs and Y inputs as shown below.
Also, feed the two outputs into an OR gate. The final output is (¬X^Y )_(X^¬Y ).

X
Y

(¬X^Y ) _ (X^¬Y )

input output

X Y X � Y

1 1 0
1 0 1
0 1 1
0 0 0

The resulting circuit is sometimes called the “exclusive or,” or XOR. Its output
is 1 if and only if exactly one (but not both) of the two inputs is 1. Exclusive or is
sometimes denoted as X � Y .

Example 4.3 highlights a convention that we will adopt in diagraming circuits.
A solid dot on two wires means that they are connected. But a crossing without
a dot, like this , means that the wires are not connected at the crossing. (Think
of one wire as crossing over top the other.)

Take note that it is possible for di↵erent circuits to describe the same Boolean
function. For example, given any input, the two circuit below give identical outputs.
The reason is that the first circuit models ¬ (X^Y ), and the second models ¬X_¬Y ,
and these two expressions are equal by DeMorgan’s law.

X
Y

¬ (X ^ Y )
X

Y
¬X _ ¬Y

You might regard the circuit on the left as the simpler one, because it uses fewer
gates. In the next section explores how a complicated circuit can often be replaced
with a much simpler one that gives identical output.

It is possible for AND and OR gates to have more than two inputs, as indicated
below. Such gates will be used in the next example.

X
Y
Z

X ^ Y ^ Z
X
Y
Z

X _ Y _ Z



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 73

Boolean Expressions and Circuits 73

Example 4.4. Design a logic circuit that yields the outputs described in this table.

X Y Z

1 1 1 1

1 1 0 1

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 1

0 0 1 0

0 0 0 0

Solution. As explained in the previous section, we can find a Boolean expression
for this table, namely (X^Y ^Z)_(X^Y ^¬Z)_(¬X^Y ^¬Z), which equals 1 on
exactly on the table’s first, second and sixth line. Here is a corresponding circuit.

X
Y
Z

(X ^ Y ^ Z) _
(X ^ Y ^¬Z)_
(¬X^Y ^¬Z)

Example 4.5. Find a Boolean expression for the output of the following circuit.

X
Y

Solution. Working from left to right, label the outputs of each gate with its output,
as indicated below.

X
Y

X ^ Y

X _ ¬Y

¬(X ^ Y )

¬Y

¬(X ^ Y ) _ (X _ ¬Y )

On the right we arrive at the output expression ¬(X ^ Y ) _ (X _ ¬Y ).



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 74

74 Discrete Math Elements

Though any Boolean expression can be modeled with a logic circuit, not just any
connection of gates results in a meaningful circuit. Consider the example below.
Given the input X = 0 and Y = 1, either output 0 or 1 fulfills the circuit.

X = 0

Y = 1
1 or 0

Therefore this circuit does not have a well-defined output for every input. It is not
a circuit for any Boolean expression. If you tried to write one, it would have some
kind of meaningless feedback loop such as X _ (Y ^ (X _ (Y ^ (X _ (Y ^ · · ·

To avoid this kind of ambiguous situation we adhere to two rules in designing
circuits. No output of any gate can eventually feed back into that gate’s input (as
happened in the above circuit), and no two separate input wires can be connected.

It should be mentioned that present-day integrated circuits are not built up from
individual, distinct logic gates, and therefore our treatment above is somewhat of
a simplification. However, understanding individual logic gates—as outlined in
this section—remains a crucial step towards a deeper understanding of computer
circuitry.

Exercises for Section 4.2

A. Design a logic circuit whose output matches the given Boolean expression

1. ¬X ^ (X _ Y ) 2. ¬
�
(X ^ Y ) _ (¬X ^ ¬Y )

�

3. ¬(X ^ (Y _ Z)) 4. ¬(X _ Z) ^ (¬Y ) ^ (Y _ ¬Z)

5. ¬X _ ¬(Y _ ¬Z) 6. ¬(X ^ Y ^ Z) _ (¬X _ Y )

B. Design a logic circuit whose output matches the given table.

7.

X Y

1 1 0
1 0 1
0 1 1
0 0 1

8.

X Y

1 1 0
1 0 1
0 1 1
0 0 0

9.

X Y

1 1 1
1 0 1
0 1 0
0 0 1

10.

X Y

1 1 0
1 0 0
0 1 1
0 0 0

11.

X Y Z

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

12.

X Y Z

1 1 1 0
1 1 0 0
1 0 1 1
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

13.

X Y Z

1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 0

14.

X Y Z

1 1 1 1
1 1 0 0
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 75

Boolean Expressions and Circuits 75

4.3 Simplifying Boolean Expressions and Circuits

In Section 4.1 we learned how to find disjunctive normal form (DNF) Boolean
expressions for truth tables. For example, for the following truth table would yield
the disjunctive normal form (X ^Y )_ (X ^¬Y )_ (¬X ^Y ) for the third column.

X Y ?

1 1 1
1 0 1
0 1 1
0 0 0

But notice that this is also the truth table for X _ Y . We’ve completed it with
(X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ Y ), but the much simpler expression X _ Y would
su�ce. In fact, the table tells us that (X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ Y ) = X _ Y ,
that is, that the two expressions are logically equivalent, or equal.

We say that (X^Y )_(X^¬Y )_(¬X^Y ) simplifies to X_Y . You already know
how to simplify certain algebraic expressions. For instance, (x+y)�(y+z) = x�z.
Now you will learn how to simplify DNF Boolean expressions.

First, recall that in a DNF expression like (X^Y )_(X^¬Y )_(¬X^Y ), the terms
(X^Y ), (X^¬Y ) and (¬X^Y ) are called the clauses of the expression. So a clause
consists of variables (or their negations) joined by ^ (that is, “ANDed together”).
A DNF expression is a collection of clauses joined by _ (that is, “ORed together”).

Let’s begin with DNF expressions that have just two variables, say X and Y .
A simple diagram systematizes the simplification of such expressions. Consider the
following square with dashed edges and circles at its corners. The edges are labeled
with the two variables, and their negations, so that each variable and its negation
appear at opposite edges.

Y ¬Y

¬X

X

Each corner corresponds to a possible 2-variable clause, as indicated below. For
example, edges ¬X and Y meet at the upper-left corner, so that corner corresponds
to (¬X ^ Y ). In this way, the edges correspond to possible 1-variable clauses, and
the corners correspond to possible 2-variable clauses.

Y ¬Y

¬X

X

¬X^¬Y

X^¬Y

¬X^Y

X^Y

The next two examples illustrate how this diagram can help simplify Boolean
expressions. After the examples, we will carefully formalize the technique.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 76

76 Discrete Math Elements

The first example shows how to simplify (X ^Y )_ (X ^¬Y )_ (¬X ^Y ), which
we already happen to know (from the previous page) simplifies to X _ Y .

Example 4.6. Simplify (X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ Y ).

Solution. Begin by drawing a dashed square with edges labeled X,¬X,Y,¬Y ,
such that each pair of opposite edges is labeled by a variable and its negation.

Y ¬Y

¬X

X

Next, darken each corner corresponding to a clause in (X^Y )_(X^¬Y )_(¬X^Y ).
For example, (X ^ Y ) is a clause, so darken the corner where edges X and Y meet.
And (X ^ ¬Y ) is a clause, so darken the corner where edges X and ¬Y meet.
Finally, (¬X ^ Y ) is a clause, so darken the corner where edges ¬X and Y meet.

Y ¬Y

¬X

X

Next, make solid any edge that joins two solid dots. Edges X and Y are bold, and
this indicates that the expression simplifies to X _ Y .

This works because an edge label equals 1 if and only if a clause at its endpoints
equals 1. For instance, X = 1 if and only X ^ Y = 1 or X ^ ¬Y = 1 (check this).
Thus, if either of the solid edges equals 1 (that is, if X _ Y = 1), then at least one
of darkened clauses equals 1. In other words, (X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ Y ) = 1
if and only if X _ Y = 1.

Example 4.7. Simplify (X ^ Y ) _ (¬X ^ Y ) _ (¬X ^ ¬Y ).

Solution. Fill in the corners corresponding to the three clauses to get this square.

Y ¬Y

¬X

X

Edges ¬X and Y join solid dots, to the expression simplifies to ¬X _ Y . (You can
confirm this by showing that (X ^ Y ) _ (¬X ^ Y ) _ (¬X ^ ¬Y ) and ¬X _ Y have
the same truth table.)



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 77

Boolean Expressions and Circuits 77

One final comment before summarizing our technique. For expressions such as
(X ^ Y ) _ (¬X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ ¬Y ), all four corners are darkened. Note
that this expression equals 1. If all corners are darkened, the simplification is 1.

Fact 4.1. How to simplify a DNF expression that has two variables X and Y .

1. Draw a dashed square, labeled as shown below.

Y ¬Y

¬X

X

Darken the corners corresponding to the expression’s 2-variable clauses.
Make solid all edges (if any) corresponding to the expression’s 1-variable
clauses, and darken their endpoints. Finally, make solid the remaining
edges (if any) that join two darkened corners.

2. If all four corners are darkened, then the expression simplifies to 1.
If no corners are darkened, then the expression simplifies to 0.
Otherwise, OR together the following expressions:

(a) the clauses corresponding to filled darkened not on a solid edge.
(b) the labels of any solid edges.

The result is the simplified expression.

Step 2 mentions a situation in which no corners are darkened. How is this
possible? If the expression has a clause like (X ^ ¬X), containing both a variable
and its negation, then no corner meets both edges X and ¬X. In this rare situation,
there is no corner to darken for the clause. Such a clause equals 0. If all clauses are
like this, no corner is darkened, and the entire expression equals 0.

Another rare but possible scenario concerns clauses like (X ^ X ^ Y ) with a
repeated term. Because X ^ X = X, the extra X is superfluous. For this clause,
darken the corner for X ^ Y , etc.

Example 4.8. Simplify (¬X ^ Y ) _ (¬X ^ ¬Y ).

Solution. Darken the corners for the two clauses to get the square below (left).
Then make solid all edges joining darkened corners. There is only one, labeled ¬X.
We get the square below (right). This completes Step 1.

Y ¬Y

¬X

X

Y ¬Y

¬X

X

Step 2(b) of Fact 4.1 says to OR together the labels of solid edges. There is only
one solid edge, labeled ¬X, so the simplified expression is ¬X.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 78

78 Discrete Math Elements

Example 4.9. Simplify (¬X ^ Y ) _ (X ^ ¬Y ).

Solution. Step 1 of Fact 4.1 says to darken the corners corresponding to the two
clauses, and make solid the edge connecting them. This yields the following square.

Y ¬Y

¬X

X

No edge joins two darkened corners, so there are no solid edges. Step 2(a) says
to OR together the clauses corresponding to the darkened corners. This results in
(¬X ^ Y ) _ (X ^ ¬Y ). Note that there is no simplification in this case.

Example 4.10. Simplify X _ (¬X ^ ¬Y ).

Solution. There are two clauses, the 1-variable clause X and the 2-variable clause
(¬X ^¬Y ). Step 1 of Fact 4.1 says to darken the corner for (¬X ^¬Y ), then make
solid the edge X and darken its endpoints. This results in the diagram below (left).
Continuing Step 1, solid in the edge ¬Y that joins darkened corners (below, right).

Y ¬Y

¬X

X

Y ¬Y

¬X

X

Step 2(a) of Fact 4.1 says to OR together the clauses corresponding to the solid
edges. This results in the simplification X _ ¬Y .

You may find that you can sometimes reason out a simplification without doing
a diagram. That is good.

Next we consider simplifying DNF expressions with three variables, say X,Y, Z.
The diagram we will need for this is not a square, but a cube. Label the six faces
of a cube with X,¬X, Y , ¬Y , Z and ¬Z as shown below (left). Notice that each
variable and its negation are on opposite faces.

Y ¬Y

¬X

X

Z ¬Z¬Z Y ¬Y

¬X

X

Z ¬Z

front
face

In this view, the “front” face (the one bounded by the largest face) overlaps the
other five faces. It’s best to regard this front face as a region outside the largest
square of the cube, as shown shaded above (right). This front face is labeled ¬Z.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 79

Boolean Expressions and Circuits 79

Notice how each corner (circle) touches three faces and thus corresponds to
the 3-variable clause formed by the three face labels. Similarly, any (dashed) edge
touches two labeled faces, so it corresponds to a 2-variable clause formed by the two
face labels. In turn, each face represents a 1-variable clause, as indicated below.

Y ¬Y

¬X

X

Z ¬Z

edge corresponds to (X ^ ¬Y ) corner corresponds to (X ^ ¬Y ^ ¬Z)

face corresponds to (¬Y ).

The next example show how to use this cube diagram to simplify a 3-variable
DNF expression. After the example, we will state the procedure in detail.

Example 4.11. Simplify the following expression:
(X ^ Y ^ Z) _ (X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ Z) _ (¬X ^ Y ^ Z) _ (X ^ Y ^ ¬Z).

Solution. Draw the cube, and darken the corners corresponding to the clauses in
the above expression. For example, the first clause is (X ^ Y ^ Z), so darken the
circle that touches the faces labeled X,Y and Z. The second clause is (X^¬Y ^Z),
so darken the circle that touches faces labeled X,¬Y, Z, and so on.

Y ¬Y

¬X

X

Z ¬Z¬Z

Now shade any face that has four darkened corners, and also make solid any edge
that has both endpoints darkened.

Y ¬Y

¬X

X

Z ¬Z¬Z

Face Z is shaded, and it corresponds to the clause Z. And there is one solid edge
not on a shaded face, and it corresponds to the clause (X ^ Y ). The simplified
expression is the OR of these two clauses, namely Z _ (X ^ Y ).



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 80

80 Discrete Math Elements

Fact 4.2. How to simplify a DNF expression that has three variables X,Y, Z.

1. Draw a dashed cube with faces labeled as indicated. Darken all corners
corresponding to the expression’s 3-variable clauses. Make solid all edges
corresponding to the 2-variable clauses (if any) and darken their endpoints.
Shade all faces corresponding to 1-variable clauses (if any), darken their
corners, and make their edges solid.

Y ¬Y

¬X

X

Z ¬Z¬Z

Make solid any remaining dashed edges have both endpoints darkened.
Shade any remaining unshaded faces that have all corners darkened.

2. If all eight corners are darkened, then the expression equals 1.
If no corner is darkened, then the expression equals 0.
Otherwise, the simplification is the OR of the following expressions:

(a) all 1-variable clauses (if any) corresponding to shaded faces,
(b) all 2-variable clauses (if any) corresponding to solid edges that are

not edges of a shaded face,
(c) all 3-variable clauses (if any) corresponding to darkened circles that

are not endpoints of solid edges.

Example 4.12. Simplify the following expression:
(X ^ Y ^¬Z)_ (X ^¬Y ^¬Z)_ (¬X ^¬Y ^¬Z)_ (¬X ^ Y ^¬Z)_ (X ^ Y ^Z).

Solution. All clauses have three variables. Darken the corners corresponding to the
clauses, as shown below. The outside face ¬Z has all corners darkened, so shade it
and make its edges solid. The edge between faces X and Y has both endpoints
darkened, so make it solid.

Y ¬Y

¬X

X

Z ¬Z

¬Z

(X ^ Y )

Face ¬Z is shaded, and it corresponds to the clause ¬Z. And there is one solid
edge between unshaded faces X and Y , corresponding to the clause (X ^ Y ). The
simplified expression is the OR of these clauses, namely (X ^ Y ) _ ¬Z.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 81

Boolean Expressions and Circuits 81

Example 4.13. Simplify the following expression:
(X^Y ^Z)_(X^¬Y ^Z)_(¬X^¬Y ^Z)_(¬X^Y ^Z)_(X^Y ^¬Z)_(X^¬Y ^¬Z).

Solution. Draw the cube diagram and darken the corners for the six clauses. Faces
X and Z have all corners darkened, so shade them and make their edges solid.

Y ¬Y

¬X

X

Z ¬Z¬Z

The simplified expression is X _ Z.

Example 4.14. Simplify (X ^ Y ^ ¬Z) _ (¬X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ ¬Z).

Solution. Darken the corners corresponding to the three clauses. No face has all
corners darkened, so there is no face to shade. There is an edge joining darkened
corners, so make it solid.

Y ¬Y

¬X

X

Z ¬Z¬Z
(X ^ Y ^ ¬Z)

(¬X ^ ¬Y )

The simplified expression is (¬X ^ ¬Y ) _ (X ^ Y ^ ¬Z).

Example 4.15. Simplify (X ^Y ^Z)_ (X ^¬Y ^Z)_ (¬X ^¬Y ^Z)_ (¬X ^Y ).

Solution. Draw the cube and darken the corners corresponding to the first three
clauses. The last clause has just two variables. It corresponds to the edge between
faces ¬X and Y , so make that edge bold and darken its endpoints. See below (left).

Y ¬Y

¬X

X

Z ¬Z¬Z Y ¬Y

¬X

X

Z ¬Z¬Z

The face Z has all four corners darkened, so shade it in and make its edges bold
(above, right). From this we read o↵ the simplified expression as Z _ (X ^¬Y ).



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 82

82 Discrete Math Elements

Example 4.16. Simplify (¬X^Y ^¬Z)_(X^Y ^Z)_(X^¬Y ^Z)_(¬X^¬Y ^Z).

Solution. The filled-in cube is as follows.

Y ¬Y

¬X

X

Z ¬Z¬Z

The simplified expression is (¬X ^ Y ^ ¬Z) _ (X ^ Z) _ (¬Y ^ Z).

As you might expect, simplifying DNF expressions with four variables would in-
volve diagrams resembling four-dimensional cubes. We will not pursue this, though
we will discuss four-dimensional cubes in Chapter 16.

Simplifying DNF expressions has important applications in circuit design. If a
circuit corresponds to a Boolean expression that can be simplified, then the circuit
can be simplified too. The simpler circuit is then more economical, e�ceint and
robust. The next example, which is a continuation of Example 4.4, illustrates this.
Example 4.4 gave a truth table and asked for a circuit whose output matched the
table. Now we repeat Example 4.4, but then go on to simplify the circuit.

Example 4.17. Find the simplest circuit that has the following outputs.

X Y Z

1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 0
0 1 0 1
0 0 1 0
0 0 0 0

Solution. In Example 4.4, we found a DNF expression for this table, namely
(X ^ Y ^ Z) _ (X ^ Y ^ ¬Z) _ (¬X ^ Y ^ ¬Z). Here is the corresponding circuit.

X
Y
Z

(X ^ Y ^ Z) _
(X ^ Y ^¬Z)_
(¬X^Y ^¬Z)

To simplify the output expression (X ^ Y ^ Z) _ (X ^ Y ^ ¬Z) _ (¬X ^ Y ^ ¬Z),
we draw the following diagram.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 83

Boolean Expressions and Circuits 83

Y ¬Y

¬X

X

Z ¬Z¬Z

This reveals that (X^Y ^Z)_(¬X^Y ^¬Z)_(X^Y ^¬Z) = (X^Y )_(Y ^¬Z).
This simplified expression yields the simplified circuit shown below.

X
Y
Z (X ^ Y ) _ (Y ^ ¬Z)

This simplified circuit has only four gates, wheres the original circuit had six.

The simplification techniques (Facts 4.1 and 4.2) described here are adapted
from a technique known as Karnaugh maps, which can handle up to five or so
variables. Unfortunately, the general problem of simplifying boolean expressions
(even full-DNF) with more than seven variables is known to be extremely di�cult.

Exercises for Section 4.3

In exercises 1-10, simplify the DNF expression, if possible.

1. (X ^ Y ) _ (¬X ^ ¬Y ) 2. (¬X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ ¬Y )

3. (X ^ Y ^ Z) _ (¬X ^ Y ^ Z) _ (X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ Z) _ (¬X ^ Y ^ ¬Z)

4. (X ^ Y ^ Z) _ (X ^ Y ^ ¬Z) _ (¬X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ ¬Z)

5. (X ^ Y ^ Z) _ (X ^ Y ^ ¬Z) _ (X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ Z)

6. (¬X ^ Y ^ ¬Z) _ (¬X ^ ¬Y ^ ¬Z) _ (¬X ^ ¬Y ^ Z) _ (X ^ ¬Y ^ ¬Z)

7. (X ^ Y ^ Z) _ (X ^ Y ^ ¬Z) _ (¬X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ ¬Z)

8. (X^Y ^Z)_(¬X^Y ^Z)_(X^¬Y ^Z)_(X^Y ^¬Z)_(¬X^Y ^¬Z)_(X^¬Y ^¬Z)

9. (X^Y ^Z)_(¬X^Y ^Z)_(X^¬Y ^Z)_(¬X^¬Y ^Z)_(¬X^Y ^¬Z)_(X^¬Y ^¬Z)

10. (X ^ Y ^ Z) _ (¬X ^ Y ^ Z) _ (X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ Z) _ (¬X ^ Y ^ ¬Z) _
(X ^ ¬Y ^ ¬Z) _ (X ^ Y ^ ¬Z)

11. Draw the simplest circuit whose output is given by the expression in Exercise 5 above.

12. Draw the simplest circuit whose output is given by the expression in Exercise 7 above.

13. Draw the simplest circuit whose output is given by the expression in Exercise 9 above.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 84

84 Discrete Math Elements

4.4 Case Study: Binary Addition Circuits

This section introduces the idea that logic circuits can perform numeric calculations.
But to keep the discussion simple, we will consider only addition of binary integers.
However, the ideas and approaches introduced here can be extended to any numeric
operation. Indeed, the topic of this section—if taken further—is the basis for the
internal workings of any computer. (If you are so inclined, you can explore this in
a more advanced course.)

Recall (from Section 1.5, if necessary), that a binary integer can be represented
as a sting of 0’s and 1’s, like 1011010. Each digit therefore has only two possible
values, 0 or 1, so we can think of an n-digit binary number as n di↵erent inputs to
a logic circuit. Below we will design a circuit whose inputs are two binary numbers,
and whose output is their sum.

To begin, think of the simple process of adding two 1-digit binary numbers. The
four possibilities are shown below.

0
+ 0

0

1
+ 0

1

0
+ 1

1

1
+ 1

1 0

The first three sums have 1-digit answers, but the last one, which expresses one
plus one equals two, has a 2-digit answer. To be totally uniform, lets agree to pad
the first three answers with an extra 0 on the right, like this.

0
+ 0

0 0

1
+ 0

0 1

0
+ 1

0 1

1
+ 1

1 0

So we are adding binary digits X and Y get a 2-digit binary number CS, as follows.

X
+ Y

C S

We call S the sum bit and C the carry bit, for reasons that will soon be apparent.
Notice that S = 1 precisely when exactly one of X or Y equals 1. That is, S = 1

when X or Y is 1, but they are not both 1. In symbols,

S = (X _ Y ) ^ ¬(X ^ Y ).

Further, C = 1 exactly when both X and Y are 1, which is to say

C = X ^ Y.

Figure 4.1 shows the circuit corresponding to these Boolean expressions. It is
oriented vertically to echo the process of column addition. There are two inputs X
and Y at the top, and two outputs C and S at the bottom, and their relationship
is CS = X + Y . Thus the circuit indeed adds two 1-digit binary numbers. This
circuit is called a half adder. (It is our first example of a circuit with two outputs.)



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 85

Boolean Expressions and Circuits 85

X
+ Y

C S

S = (X _ Y ) ^ ¬(X ^ Y )

C = X ^ Y

Half Adder

�
input

 � output

X

Y

SC

Fig. 4.1 The half adder adds two 1-digit binary numbersX and Y , yielding a 2-digit number CS.

Before expanding this to a circuit that adds multi-digit binary numbers, it is
helpful to review the process of adding two binary numbers by hand. As an example,
suppose we wish to perform the following addition.

1 0 1 1 1 1
+ 1 0 1 0

First, add the right-most digits (the digits in the one’s place). We get 1 + 0 = 1.

1 0 1 1 1 1
+ 1 0 1 0

1

Next, add the digits in the two’s place. We get 1 + 1 = 10, but we carry the 1.
1

1 0 1 1 1 1
+ 1 0 1 0

0 1

Now add the digits in the four’s place. We get 1 + 1 + 0 = 10, and we carry the 1.

1 1

1 0 1 1 1 1
+ 1 0 1 0

0 0 1

Now add the digits in the eight’s place. We get 1+ 1+ 1 = 11, and we carry again.

1 1 1

1 0 1 1 1 1
+ 1 0 1 0

1 0 0 1

Continuing in this fashion yields the final sum.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 86

86 Discrete Math Elements

1 1 1

1 0 1 1 1 1
+ 1 0 1 0

1 1 1 0 0 1

We have performed the addition 47 + 10 = 57, in binary.
In column-adding binary numbers, as above, whenever a column has a cary digit,

three 1-digit numbers in that column must be added. A typical column is as follows.

C
X

+ Y
C0 S

Here C is the carry digit, which is added to the two digits below it. This results in
a 2-digit binary number C 0S, where C 0 a new carry digit for the next column.

Consequently, a key ingredient of a circuit that adds binary numbers is a circuit
that adds three 1-digit binary numbers. We turn out attention to this now.

Here are the eight possible ways that three 1-digit binary numbers can add.

0
0

+ 0
0 0

1
0

+ 0
0 1

0
1

+ 0
0 1

0
0

+ 1
0 1

0
1

+ 1
1 0

1
0

+ 1
1 0

1
1

+ 0
1 0

1
1

+ 1
1 1

The circuit in Figure 4.2, called a full adder, performs such additions. It adds
X and Y with a half adder, then adds C to their sum with a second half adder.
indexfull adder

C

X

Y

Full Adder
C S

C S

C
X

+ Y
C 0 S

9
=

; input

 � output

SC 0

half
adder

half
adder

Fig. 4.2 The full adder adds three 1-digit binary numbers C,X, Y , yielding a 2-digit number C0S.

Notice that the only way that C + X + Y can produce a carry is if the sum



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 87

Boolean Expressions and Circuits 87

X +Y does, or if the sum C+(X +Y ) does. Therefore, in the full adder, the carry
digits of the two half adders feed into an OR gate to produce a carry digit C 0. You
can check that the full adder gives the correct output for all eight 0-1 combinations
for C, X and Y .

Now that we have developed half and full adders, we can string them together
to design a circuit that mimics column addition of binary numbers.

Denote an arbitrary binary number as a sequence like X5X4X3X2X1X0, with
subscripts increasing right-to-left. Then for any subscript i, the digit Xi (which is
either 0 or 1) is the digit in the 2i’s place.

With this convention, the column-addition of two typical binary numbers is
organized as follows.

X4 X3 X2 X1 X0

+ Y4 Y3 Y2 Y1 Y0

S5 S4 S3 S2 S1 S0

The usual hand computation (adding column by column, and carrying) of such
a sum is mirrored—and automated—by the circuit shown in Figure 4.3. The pat-
tern could be extended indefinitely to the right, to accommodate the addition of
arbitrarily large numbers.

full adder full adder full adder full adder half
adder

S0S1S2S3S4

Y1Y2Y3Y4

X1X2X3X4

Y0

X0

C C C C C

· · ·

Fig. 4.3 A binary addition circuit.

As mentioned before, the discussion here is intended only to provide a taste of
the subject of numeric computation. Not only have we omitted other operations like
division or multiplication, but we have considered only addition of positive integers.
A more complete treatment would include computer implementation of negative
and rational numbers.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 88

88 Discrete Math Elements

Solutions for Chapter 4

Section 4.1

1. (X ^ ¬Y ) _ (¬X ^ Y )

3. (X ^ Y ) _ (¬X ^ Y )

5. (X ^ ¬Y ^ Z) _ (X ^ ¬Y ^ ¬Z) _ (¬X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ ¬Z)

7. (X ^ Y ^ Z) _ (X ^ ¬Y ^ Z) _ (¬X ^ Y ^ Z) _ (¬X ^ ¬Y ^ Z)

9. Consider a Boolean expression f(X,Y, Z, . . .) with some number of variables. In
Section 4.1 we saw how any Boolean expression, has a disjunctive normal form.
So put the Boolean expression ¬f(X,Y, Z, . . .) into disjunctive normal form. For
example, perhaps

¬f(X,Y, Z) = (X ^ ¬Y ^ Z) _ (X ^ ¬Y ^ ¬Z) _ (¬X ^ ¬Y ^ Z)

By DeMorgan’s law, the negation of this is

f(X,Y, Z) = ¬
⇣
(X ^ ¬Y ^ Z) _ (X ^ ¬Y ^ ¬Z) _ (¬X ^ ¬Y ^ Z)

⌘

¬(X ^ ¬Y ^ Z) ^ ¬(X ^ ¬Y ^ ¬Z) ^ ¬(¬X ^ ¬Y ^ Z)

(¬X _ Y _ ¬Z) ^ (¬X _ Y _ Z) ^ ¬(X _ Y _ ¬Z),

which is conjunctive normal form.

Section 4.2

A. Design a logic circuit whose output matches the given Boolean expression

1. ¬X ^ (X _ Y )

X
Y

3. ¬(X ^ (Y _ Z))

Y
Z

X

5. ¬X _ ¬(Y _ ¬Z)

Z

X

Y

B. Design a logic circuit whose output matches the given table.

7. The full-DNF expression for this table is (X ^ ¬Y ) _ (¬X ^ Y ) _ (¬X ^ ¬Y ). But
note that this is the table for ¬(X ^ Y ), so a simpler circuit is shown below.

X Y

1 1 0
1 0 1
0 1 1
0 0 1

X
Y

¬(X ^ Y )

9. The full-DNF expression for this table is (X ^ Y ) _ (X ^ ¬Y ) _ (¬X ^ ¬Y ). The
corresponding circuit is shown below.



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 89

Boolean Expressions and Circuits 89

X Y

1 1 1
1 0 1
0 1 0
0 0 1

X
Y

11. The full-DNF is (X ^ Y ^Z)_ (¬X ^ Y ^Z)_ (¬X ^¬Y ^Z)_ (¬X ^¬Y ^¬Z).
The corresponding circuit is shown below.

X Y Z

1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 1

X
Y
Z

13. The full-DNF expression for this table is (X ^ ¬Y ^ ¬Z) _ (¬X ^ ¬Y ^ Z). The
corresponding circuit is shown below.

X Y Z

1 1 1 0
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 0
0 0 1 1
0 0 0 0

X
Y

Z

Section 4.3

1. (X ^ Y ) _ (¬X ^ ¬Y ) No simplification. (Square has no solid edges.)

3. (X ^ Y ^ Z) _ (¬X ^ Y ^ Z) _ (X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ Z) _ (¬X ^ Y ^ ¬Z)

Y ¬Y

¬X

X

Z ¬Z Simplification: Z _ (¬X ^ Y )

5. (X ^ Y ^ Z) _ (X ^ Y ^ ¬Z) _ (X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ Z)



July 13, 2023 15:32 ws-book961x669 Discrete Math Elements Alpha page 90

90 Discrete Math Elements

Y ¬Y

¬X

X

Z ¬Z Simplification: (X ^ Y ) _ (X ^ Z) _ (¬Y ^ Z)

7. (X ^ Y ^ Z) _ (X ^ Y ^ ¬Z) _ (¬X ^ ¬Y ^ Z) _ (¬X ^ ¬Y ^ ¬Z)

Y ¬Y

¬X

X

Z ¬Z Simplification: (X ^ Y ) _ (¬X ^ ¬Y )

9. (X^Y ^Z)_(¬X^Y ^Z)_(X^¬Y ^Z)_(¬X^¬Y ^Z)_(¬X^Y ^¬Z)_(X^¬Y ^¬Z)

Y ¬Y

¬X

X

Z ¬Z Simplification: Z _ (X ^ ¬Y ) _ (¬X ^ Y )

11. Draw the simplest circuit whose output is given by the expression in Exercise 5 above.

The simplified expression in Exercise 5 is (X ^ Y ) _ (X ^ Z) _ (¬Y ^ Z). The
corresponding circuit is shown below.

X
Y

Z

13. Draw the simplest circuit whose output is given by the expression in Exercise 9 above.

The simplified expression in Exercise 9 is Z_(X^¬Y )_(¬X^Y ). The corresponding
circuit is shown below.

X

Y

Z


